A023228 Numbers k such that k and 8*k + 1 are both prime.
2, 5, 11, 17, 29, 71, 101, 107, 131, 137, 149, 179, 239, 269, 347, 401, 431, 449, 479, 491, 509, 557, 599, 617, 659, 677, 761, 809, 821, 857, 929, 941, 947, 977, 1151, 1187, 1229, 1289, 1307, 1361, 1367, 1409, 1487, 1559, 1571, 1601, 1619, 1667, 1697, 1811, 1871
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Samuel S. Wagstaff, Jr., Sum of Reciprocals of Germain Primes, Journal of Integer Sequences, Vol. 24, No. 2 (2021), Article 21.9.5.
Crossrefs
Cf. A007519 (primes of form 8n+1), A005123 ((( primes == 1 mod 8 ) - 1)/8). - Klaus Brockhaus, Dec 21 2008
Programs
-
Magma
[ p: p in PrimesUpTo(1900) | IsPrime(8*p+1) ]; // Klaus Brockhaus, Dec 21 2008
-
Mathematica
Select[Prime[Range[2000]], PrimeQ[8# + 1]&] (* Vincenzo Librandi, Feb 02 2014 *)
-
PARI
list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(8*p+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Oct 20 2021
Formula
Sum_{n>=1} 1/a(n) is in the interval (1.151956749, 1.4207187) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021