cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023295 Primes that remain prime through 3 iterations of function f(x) = 8x + 9.

Original entry on oeis.org

23, 643, 2293, 5023, 5653, 9643, 10723, 11503, 12823, 15493, 18353, 18773, 28403, 32003, 32183, 41953, 42853, 45233, 49853, 50873, 52103, 53113, 54623, 56123, 76003, 80803, 84443, 86783, 88813, 89413, 92033, 95213, 96823, 97943, 100613, 115793
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+9, 64*p+81 and 512*p+657 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023232, A023264, and of A153762.

Programs

  • Magma
    [n: n in [1..450000] | IsPrime(n) and IsPrime(8*n+9) and IsPrime(64*n+81) and IsPrime(512*n+657)]; // Vincenzo Librandi, Aug 04 2010

A023351 Primes that remain prime through 5 iterations of function f(x) = 8x + 9.

Original entry on oeis.org

294793, 2586943, 5360623, 6351613, 7965743, 11141083, 11378453, 13458923, 14884823, 15585523, 18691633, 25387763, 29964293, 30766283, 32388253, 38647723, 40653433, 48716873, 48786593, 52628473, 54270533, 55507853, 56575633, 59103403
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 8*p+9, 64*p+81, 512*p+657, 4096*p+5265 and 32768*p+42129 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023232, A023264, A023295, A023323, and of A153762.

Programs

  • Magma
    [n: n in [1..19000000] | IsPrime(n) and IsPrime(8*n+9) and IsPrime(64*n+81) and IsPrime(512*n+657) and IsPrime(4096*n+5265) and IsPrime(32768*n+42129)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    prp5Q[n_]:=AllTrue[Rest[NestList[8#+9&,n,5]],PrimeQ]; Select[Prime[Range[3513000]],prp5Q] (* Harvey P. Dale, May 25 2024 *)
    prp5Q2[n_] := AllTrue[NestList[8 # + 9 &, n, 5], PrimeQ]; Select[Range[23, 59120000, 70], prp5Q2] (* Faster  than the first Mathematica program above. *) (* Harvey P. Dale, May 25 2024 *)

Formula

a(n) == 23 (mod 70). - John Cerkan, Nov 13 2016
Showing 1-2 of 2 results.