cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A023317 Primes that remain prime through 4 iterations of function f(x) = 6x + 5.

Original entry on oeis.org

11, 13, 83, 151, 317, 373, 1721, 3529, 4153, 4243, 4637, 4783, 5209, 5849, 5923, 6661, 8431, 10903, 11329, 14519, 16183, 16979, 20149, 26669, 27509, 27827, 29873, 29947, 32987, 33637, 33937, 34919, 35099, 35543, 36277, 36691, 38069, 38461, 41651, 47407
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+5, 36*p+35, 216*p+215 and 1296*p+1295 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023221, A023257, A023288, and A059325.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(6*n+5) and IsPrime(36*n+35) and IsPrime(216*n+215) and IsPrime(1296*n+1295)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    if4Q[n_]:=AllTrue[Rest[NestList[6#+5&,n,4]],PrimeQ]; Select[Prime[ Range[ 5000]],if4Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 10 2018 *)

A023345 Primes that remain prime through 5 iterations of function f(x) = 6x + 5.

Original entry on oeis.org

13, 4637, 5849, 5923, 16183, 16979, 34919, 36277, 67003, 79337, 115571, 159739, 175141, 245753, 249133, 305717, 341569, 359353, 383833, 437263, 455317, 498497, 511519, 567121, 579961, 581699, 633797, 683831, 693431, 849197, 972197, 1022449
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+5, 36*p+35, 216*p+215, 1296*p+1295 and 7776*p+7775 are also primes. - Vincenzo Librandi, Aug 05 2010

Crossrefs

Subsequence of A023221, A023257, A023288, A023317, and A059325.

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(n) and IsPrime(6*n+5) and IsPrime(36*n+35) and IsPrime(216*n+215) and IsPrime(1296*n+1295) and IsPrime(7776*n+7775)] // Vincenzo Librandi, Aug 05 2010
  • Mathematica
    Select[Range[1100000],And@@PrimeQ[NestList[6#+5&,#,5]]&] (* Harvey P. Dale, Mar 31 2012 *)
Showing 1-2 of 2 results.