cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023421 Generalized Catalan Numbers x^2*A(x)^2 -(1-x+x^2+x^3+x^4)*A(x) + 1 =0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 65, 133, 274, 568, 1184, 2481, 5223, 11042, 23434, 49908, 106633, 228505, 490999, 1057683, 2283701, 4941502, 10713941, 23272929, 50642017, 110377543, 240944076, 526717211, 1152996206, 2527166334, 5545804784, 12184053993
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A023421 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            procname(n-1)+add(procname(k)*procname(n-2-k), k=3..n-2) ;
        end if;
    end proc: # R. J. Mathar, May 01 2015
  • Mathematica
    a[0]=1; a[n_]:= a[n]=a[n-1] + Sum[a[k]*a[n-2-k], {k,3,n-2}]; Table[a[n], {n,0,30}] (* modified by G. C. Greubel, Jan 01 2018 *)
  • PARI
    {a(n) = if(n==0,1, a(n-1) + sum(k=3,n-2, a(k)*a(n-k-2)))};
    for(n=0,30, print1(a(n), ", ")) \\ G. C. Greubel, Jan 01 2018

Formula

G.f. A(x) satisfies: A(x) = (1 + x^2 * A(x)^2) / (1 - x + x^2 + x^3 + x^4). - Ilya Gutkovskiy, Jul 20 2021
D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(-n+1)*a(n-2) +(n-4)*a(n-4) +3*(n-7)*a(n-6) +(2*n-17)*a(n-7) +(n-10)*a(n-8)=0. - R. J. Mathar, Feb 03 2025