cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023422 Generalized Catalan Numbers x^2*A(x)^2 -(1-x+x^2+x^3+x^4+x^5)*A(x) + 1 =0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 129, 261, 530, 1080, 2208, 4528, 9313, 19207, 39714, 82314, 170996, 355976, 742545, 1551817, 3248823, 6812947, 14309557, 30099645, 63402315
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_]:= a[n]=a[n-1] + Sum[a[k]*a[n-2-k], {k,4,n-2}]; Table[a[n], {n,0,30}] (* modified by G. C. Greubel, Jan 01 2018 *)
    B[q_] = (q^2 + q^3 + q^4 + q^5 - Sqrt[((q(q^5 - 1))/(q - 1) - 1)^2 - 4q^6] - q + 1)/(2q^2); CoefficientList[B[q] + O[q]^31, q] (* Jean-François Alcover, Jan 29 2019 *)
  • PARI
    {a(n) = if(n==0,1, a(n-1) + sum(k=4,n-2, a(k)*a(n-k-2)))};
    for(n=0,30, print1(a(n), ", ")) \\ G. C. Greubel, Jan 01 2018

Formula

G.f. A(x) satisfies: A(x) = (1 + x^2 * A(x)^2) / (1 - x + x^2 + x^3 + x^4 + x^5). - Ilya Gutkovskiy, Jul 20 2021
D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(-n+1)*a(n-2) +(n-4)*a(n-4) +(2*n-11)*a(n-5) +(n-7)*a(n-6) +2*(2*n-17)*a(n-7) +3*(n-10)*a(n-8) +(2*n-23)*a(n-9) +(n-13)*a(n-10)=0. - R. J. Mathar, Feb 03 2025