A023438 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-8).
0, 1, 1, 2, 3, 5, 8, 13, 21, 33, 53, 84, 134, 213, 339, 539, 857, 1363, 2167, 3446, 5479, 8712, 13852, 22025, 35020, 55682, 88535, 140771, 223827, 355886, 565861, 899722, 1430563, 2274603, 3616631, 5750463, 9143267, 14537844, 23115250, 36753372, 58438059
Offset: 0
Keywords
Links
- J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
- V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,0,0,-1).
Crossrefs
See A000045 for the Fibonacci numbers.
Programs
-
Mathematica
LinearRecurrence[{1,1,0,0,0,0,0,-1},{0,1,1,2,3,5,8,13},40] (* Harvey P. Dale, Nov 03 2023 *)
-
PARI
concat(0, Vec(x / ( (x-1)*(x^7+x^6+x^5+x^4+x^3+x^2-1) ) + O(x^60))) \\ Michel Marcus, Sep 06 2017
Formula
G.f.: x / ( (x-1)*(x^7+x^6+x^5+x^4+x^3+x^2-1) ). - R. J. Mathar, Nov 29 2011