A023441 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-11).
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 143, 231, 372, 600, 967, 1559, 2513, 4051, 6530, 10526, 16967, 27350, 44086, 71064, 114550, 184647, 297638, 479772, 773359, 1246601, 2009434, 3239068, 5221152, 8416134
Offset: 0
Keywords
Links
- J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
- V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,0,0,0,0,0,-1).
Crossrefs
See A000045 for the Fibonacci numbers.
Programs
-
Mathematica
LinearRecurrence[{1,1,0,0,0,0,0,0,0,0,-1},{0,1,1,2,3,5,8,13,21,34,55},40] (* Harvey P. Dale, Jun 06 2022 *)
-
PARI
concat(0, Vec(x/((x-1)*(1+x)*(x^9+x^7+x^5+x^3+x-1)) + O(x^50))) \\ Michel Marcus, Sep 06 2017
Formula
G.f.: x/((x-1)*(1+x)*(x^9+x^7+x^5+x^3+x-1)). [R. J. Mathar, Jul 27 2009]