cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023506 Exponent of 2 in prime factorization of prime(n) - 1.

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 5, 2, 1, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 6, 2, 1, 1, 1, 1, 2, 3, 1, 4, 1, 8, 1, 2, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 5, 1, 1, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 4, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Keywords

Comments

Also the number of steps to reach an integer starting with prime(n)/2 and iterating the map x->x*ceiling(x). - Benoit Cloitre, Sep 06 2002
Also exponent of 2 in -1 + prime(n)^s for odd exponents s because (-1 + prime(n)^s)/(prime(n) - 1) is odd. - Labos Elemer, Jan 20 2004
First occurrence of 0,1,2,3,4,...: 1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, ..., for primes 2, 3, 5, 41, 17, 97, 193, 641, 257, 7681, 13313, 18433, 12289, 40961, 114689, 163841, 65537, 1179649, 786433, 5767169, 7340033, .... - Robert G. Wilson v, May 28 2009
By Dirichlet's theorem on arithmetic progressions, the asymptotic density of primes p such that p == 1 (mod 2^k) within all the primes is 1/2^(k-1), for k >= 1. This is also the asymptotic density of terms in this sequence that are >= k. Therefore, the asymptotic density of the occurrences of k in this sequence is d(k) = 1/2^(k-1) - 1/2^k = 1/2^k, and the asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2. - Amiram Eldar, Mar 14 2025

Examples

			For n = 25, prime(25) = 97, A006093(25) = 96 = 2*2*2*2*2*3, so a(25) = 5.
		

Crossrefs

Subsequence of A001511 (except 1st term).

Programs

  • Magma
    [Valuation(NthPrime(n)-1, 2): n in [1..110]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    A023506:= x -> padic[ordp](ithprime(x)-1,2):
    seq(A023506(x),x=1..1000); # Robert Israel, May 06 2014
  • Mathematica
    f[n_] := Block[{fi = First@ FactorInteger[ Prime@n - 1]}, If[ fi[[1]] == 2, fi[[2]], 0]]; Array[f, 105] (* Robert G. Wilson v, May 28 2009 *)
    Table[IntegerExponent[Prime[n] - 1, 2], {n, 110}] (* Bruno Berselli, Aug 05 2013 *)
  • PARI
    A023506(n) = {local(m,r);r=0;m=prime(n)-1;while(m%2==0,m=m/2;r++);r} \\ Michael B. Porter, Jan 26 2010
    
  • PARI
    forprime(p=2, 700, print1(valuation(p-1,2),", ")); \\ Bruno Berselli, Aug 05 2013
    
  • Python
    from sympy import prime
    def A023506(n): return (~(m:=prime(n)-1)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula