cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023543 Convolution of natural numbers with A023533.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 216, 222, 228
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[A023533(k)*(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 15 2022
    
  • Mathematica
    Join[{1,2}, Table[(m+2)*(n+1) -Binomial[n+4,4], {n,6}, {m, Binomial[n+3,3] -2, Binomial[n+4,3] -3}]]//Flatten (* G. C. Greubel, Jul 15 2022 *)
  • SageMath
    [1,2]+flatten([[(m+2)*(n+1) - binomial(n+4,4) for m in (binomial(n+3,3)-2 .. binomial(n+4,3)-3)] for n in (1..6)]) # G. C. Greubel, Jul 15 2022

Formula

From G. C. Greubel, Jul 15 2022: (Start)
a(n) = Sum_{j=1..floor((n+1)/2)} (n - j + 1)*A023533(j).
a(n) = (m+2)*(n+1) - binomial(n+4, 4), for binomial(n+3, 3) - 2 <= m <= binomial(n+4, 3) - 3, and n >= 1, with a(1) = 1, a(2) = 2. (End)

Extensions

Title updated by Sean A. Irvine, Jun 06 2019