A023543 Convolution of natural numbers with A023533.
1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 216, 222, 228
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[A023533(k)*(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 15 2022
-
Mathematica
Join[{1,2}, Table[(m+2)*(n+1) -Binomial[n+4,4], {n,6}, {m, Binomial[n+3,3] -2, Binomial[n+4,3] -3}]]//Flatten (* G. C. Greubel, Jul 15 2022 *)
-
SageMath
[1,2]+flatten([[(m+2)*(n+1) - binomial(n+4,4) for m in (binomial(n+3,3)-2 .. binomial(n+4,3)-3)] for n in (1..6)]) # G. C. Greubel, Jul 15 2022
Formula
From G. C. Greubel, Jul 15 2022: (Start)
a(n) = Sum_{j=1..floor((n+1)/2)} (n - j + 1)*A023533(j).
a(n) = (m+2)*(n+1) - binomial(n+4, 4), for binomial(n+3, 3) - 2 <= m <= binomial(n+4, 3) - 3, and n >= 1, with a(1) = 1, a(2) = 2. (End)
Extensions
Title updated by Sean A. Irvine, Jun 06 2019