cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023550 Convolution of natural numbers >= 2 and (F(2), F(3), F(4), ...).

Original entry on oeis.org

2, 7, 16, 32, 59, 104, 178, 299, 496, 816, 1335, 2176, 3538, 5743, 9312, 15088, 24435, 39560, 64034, 103635, 167712, 271392, 439151, 710592, 1149794, 1860439, 3010288, 4870784, 7881131, 12751976, 20633170, 33385211, 54018448, 87403728, 141422247, 228826048
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n+4)[2] -2*n-7 ); # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n+4) - 2*n - 7 : n in [1..40]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1}, {2,7,16,32}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
  • PARI
    Vec(x*(2-x)*(1+x)/((1-x)^2*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • PARI
    vector(40, n, fibonacci(n+5) + fibonacci(n+3) -2*n-7) \\ G. C. Greubel, Jun 01 2019
    
  • Sage
    [lucas_number2(n+4,1,-1) -2*n-7 for n in (1..40)] # G. C. Greubel, Jun 01 2019
    

Formula

a(n) = A023537(n) + 2*n.
From Colin Barker, Mar 11 2017: (Start)
G.f.: x*(2-x)*(1+x) / ((1-x)^2*(1-x-x^2)).
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-15+7*sqrt(5)) + (1+sqrt(5))^n*(15+7*sqrt(5)))) / sqrt(5) - 2*n - 7.
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
(End)
a(n) = Lucas(n+4) - 2*n - 7. - G. C. Greubel, Jun 01 2019