cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023552 Convolution of natural numbers >= 3 and Fibonacci numbers.

Original entry on oeis.org

3, 7, 15, 28, 50, 86, 145, 241, 397, 650, 1060, 1724, 2799, 4539, 7355, 11912, 19286, 31218, 50525, 81765, 132313, 214102, 346440, 560568, 907035, 1467631, 2374695, 3842356, 6217082, 10059470, 16276585, 26336089, 42612709, 68948834, 111561580, 180510452
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci; List([1..40], n-> F(n+4)+2*F(n+2)-n-5); # G. C. Greubel, Jul 08 2019
  • Magma
    F:=Fibonacci; [F(n+4)+2*F(n+2)-n-5: n in [1..40]]; // G. C. Greubel, Jul 08 2019
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1},{3,7,15,28},40] (* or *) Rest[ CoefficientList[Series[(x(3-2x))/((1-x-x^2)(1-x)^2),{x,0,40}],x]]  (* Harvey P. Dale, Apr 24 2011 *)
    With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-n-5, {n,40}]] (* G. C. Greubel, Jul 08 2019 *)
  • PARI
    Vec(x*(3-2*x)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • PARI
    vector(40, n, f=fibonacci; f(n+4)+2*f(n+2)-n-5) \\ G. C. Greubel, Jul 08 2019
    
  • Sage
    f=fibonacci; [f(n+4)+2*f(n+2)-n-5 for n in (1..40)] # G. C. Greubel, Jul 08 2019
    

Formula

G.f.: x*(3-2*x)/((1-x-x^2)*(1-x)^2). - Ralf Stephan, Apr 28 2004
From Colin Barker, Mar 11 2017: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
a(n) = -5 + (2^(-1-n)*((1-sqrt(5))^n*(-13+5*sqrt(5)) + (1+sqrt(5))^n*(13+5*sqrt(5)))) / sqrt(5) - n. (End)
a(n) = Fibonacci(n+4) + 2*Fibonacci(n+2) - (n+5). - G. C. Greubel, Jul 08 2019