A023655 Convolution of (F(2), F(3), F(4), ...) and A023533.
1, 2, 3, 6, 10, 16, 26, 42, 68, 111, 180, 291, 471, 762, 1233, 1995, 3228, 5223, 8451, 13675, 22127, 35802, 57929, 93731, 151660, 245391, 397051, 642442, 1039493, 1681935, 2721428, 4403363, 7124791
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..4700
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[Fibonacci(k+2)*A023533(n-k): k in [0..n-1]]): n in [1..50]]; // G. C. Greubel, Jul 16 2022
-
Mathematica
Table[Sum[Fibonacci[m+1 -Binomial[j+3,3]], {j,0,n}], {n,0,5}, {m, Binomial[n+3,3] +1, Binomial[n+4,3]}]//Flatten (* G. C. Greubel, Jul 16 2022 *)
-
SageMath
def A023655(n, k): return sum(fibonacci(k+1-binomial(j+3,3)) for j in (0..n)) flatten([[A023655(n, k) for k in (binomial(n+3,3)+1..binomial(n+4,3))] for n in (0..5)]) # G. C. Greubel, Jul 16 2022
Formula
a(n) = Sum_{k=0..n-1} Fibonacci(k+2) * A023533(n-k), n >= 1. - G. C. Greubel, Jul 16 2022