cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023717 Numbers with no 3's in base-4 expansion.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 16, 17, 18, 20, 21, 22, 24, 25, 26, 32, 33, 34, 36, 37, 38, 40, 41, 42, 64, 65, 66, 68, 69, 70, 72, 73, 74, 80, 81, 82, 84, 85, 86, 88, 89, 90, 96, 97, 98, 100, 101, 102, 104, 105, 106, 128, 129, 130, 132, 133, 134, 136, 137, 138
Offset: 0

Views

Author

Keywords

Comments

A032925 is the intersection of this sequence and A023705; cf. A179888. - Reinhard Zumkeller, Jul 31 2010
Fixed point of the morphism: 0-> 0,1,2; 1-> 4,5,6; 2-> 8,9,10; ...; n-> 4n,4n+1,4n+2. - Philippe Deléham, Oct 22 2011

Crossrefs

Programs

  • C
    uint32_t a_next(uint32_t a_n) {
        uint32_t t = ((a_n ^ 0xaaaaaaaa) | 0x55555555) >> 1;
        return (a_n - t) & t;
    } // Falk Hüffner, Jan 22 2022
    
  • Haskell
    a023717 n = a023717_list !! (n-1)
    a023717_list = filter f [0..] where
       f x = x < 3 || (q < 3 && f x') where (x', q) = divMod x 4
    -- Reinhard Zumkeller, Apr 18 2015
    
  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 3)
            r += b * q
            b *= 4
        end
    r end; [a(n) for n in 0:58] |> println # Peter Luschny, Jan 03 2021
    
  • Mathematica
    Select[ Range[ 0, 140 ], (Count[ IntegerDigits[ #, 4 ], 3 ]==0)& ]
  • PARI
    a(n)=if(n<1,0,if(n%3,a(n-1)+1,4*a(n/3)))
    
  • PARI
    a(n)=if(n<1,0,4*a(floor(n/3))+n-3*floor(n/3))
    
  • Python
    from gmpy2 import digits
    def A023717(n): return int(digits(n,3),4) # Chai Wah Wu, May 06 2025

Formula

a(n) = Sum_{i=0..m} d(i)*4^i, where Sum_{i=0..m} d(i)*3^i is the base-3 representation of n. - Clark Kimberling
a(3n) = 4*a(n); a(3n+1) = 4*a(n)+1; a(3n+2) = 4*a(n)+2; a(n) = 4*a(floor(n/3)) + n - 3*floor(n/3). - Benoit Cloitre, Apr 27 2003
a(n) = Sum_{k>=0} A030341(n,k)*4^k. - Philippe Deléham, Oct 22 2011