A023717 Numbers with no 3's in base-4 expansion.
0, 1, 2, 4, 5, 6, 8, 9, 10, 16, 17, 18, 20, 21, 22, 24, 25, 26, 32, 33, 34, 36, 37, 38, 40, 41, 42, 64, 65, 66, 68, 69, 70, 72, 73, 74, 80, 81, 82, 84, 85, 86, 88, 89, 90, 96, 97, 98, 100, 101, 102, 104, 105, 106, 128, 129, 130, 132, 133, 134, 136, 137, 138
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
C
uint32_t a_next(uint32_t a_n) { uint32_t t = ((a_n ^ 0xaaaaaaaa) | 0x55555555) >> 1; return (a_n - t) & t; } // Falk Hüffner, Jan 22 2022
-
Haskell
a023717 n = a023717_list !! (n-1) a023717_list = filter f [0..] where f x = x < 3 || (q < 3 && f x') where (x', q) = divMod x 4 -- Reinhard Zumkeller, Apr 18 2015
-
Julia
function a(n) m, r, b = n, 0, 1 while m > 0 m, q = divrem(m, 3) r += b * q b *= 4 end r end; [a(n) for n in 0:58] |> println # Peter Luschny, Jan 03 2021
-
Mathematica
Select[ Range[ 0, 140 ], (Count[ IntegerDigits[ #, 4 ], 3 ]==0)& ]
-
PARI
a(n)=if(n<1,0,if(n%3,a(n-1)+1,4*a(n/3)))
-
PARI
a(n)=if(n<1,0,4*a(floor(n/3))+n-3*floor(n/3))
-
Python
from gmpy2 import digits def A023717(n): return int(digits(n,3),4) # Chai Wah Wu, May 06 2025
Formula
a(n) = Sum_{i=0..m} d(i)*4^i, where Sum_{i=0..m} d(i)*3^i is the base-3 representation of n. - Clark Kimberling
a(3n) = 4*a(n); a(3n+1) = 4*a(n)+1; a(3n+2) = 4*a(n)+2; a(n) = 4*a(floor(n/3)) + n - 3*floor(n/3). - Benoit Cloitre, Apr 27 2003
a(n) = Sum_{k>=0} A030341(n,k)*4^k. - Philippe Deléham, Oct 22 2011
Comments