cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023867 a(n) = 1*t(n) + 2*t(n-1) + ...+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence).

Original entry on oeis.org

2, 5, 17, 24, 54, 71, 127, 153, 242, 279, 409, 465, 645, 717, 954, 1052, 1354, 1473, 1848, 1989, 2444, 2620, 3164, 3367, 4007, 4239, 4983, 5260, 6116, 6426, 7402, 7764, 8868, 9269, 10509, 10950, 12333, 12835, 14370, 14917, 16611, 17226, 19087, 19752, 21788, 22504
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    f:= func< n | n + Floor(n*(1+Sqrt(5))/2) >;
    [(&+[j*f(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019
    
  • Mathematica
    f[n_]:= n +Floor[n*GoldenRatio]; Table[Sum[j*f[n+1-j], {j,1,Floor[(n + 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)
  • PARI
    f(n) = n + floor(n*(1+sqrt(5))/2);
    a(n) = sum(j=1, floor((n+1)/2), j*f(n+1-j)); \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    def f(n): return n + floor(n*golden_ratio)
    [sum(j*f(n+1-j) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019