A023867 a(n) = 1*t(n) + 2*t(n-1) + ...+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence).
2, 5, 17, 24, 54, 71, 127, 153, 242, 279, 409, 465, 645, 717, 954, 1052, 1354, 1473, 1848, 1989, 2444, 2620, 3164, 3367, 4007, 4239, 4983, 5260, 6116, 6426, 7402, 7764, 8868, 9269, 10509, 10950, 12333, 12835, 14370, 14917, 16611, 17226, 19087, 19752, 21788, 22504
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
f:= func< n | n + Floor(n*(1+Sqrt(5))/2) >; [(&+[j*f(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019
-
Mathematica
f[n_]:= n +Floor[n*GoldenRatio]; Table[Sum[j*f[n+1-j], {j,1,Floor[(n + 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)
-
PARI
f(n) = n + floor(n*(1+sqrt(5))/2); a(n) = sum(j=1, floor((n+1)/2), j*f(n+1-j)); \\ G. C. Greubel, Jun 12 2019
-
Sage
def f(n): return n + floor(n*golden_ratio) [sum(j*f(n+1-j) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019
Extensions
Title simplified by Sean A. Irvine, Jun 12 2019