A023893 Number of partitions of n into prime power parts (1 included); number of nonisomorphic Abelian subgroups of symmetric group S_n.
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 105, 134, 171, 215, 269, 335, 415, 511, 626, 764, 929, 1125, 1356, 1631, 1953, 2333, 2776, 3296, 3903, 4608, 5427, 6377, 7476, 8744, 10205, 11886, 13818, 16032, 18565, 21463, 24768, 28536
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 28 2022: (Start) The a(0) = 1 through a(6) = 10 partitions: () (1) (2) (3) (4) (5) (33) (11) (21) (22) (32) (42) (111) (31) (41) (51) (211) (221) (222) (1111) (311) (321) (2111) (411) (11111) (2211) (3111) (21111) (111111) (End)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Count[Map[Length,FactorInteger[#]], 1] == Length[#] &]], {n, 0, 35}] (* Geoffrey Critzer, Oct 25 2015 *) nmax = 50; Clear[P]; P[m_] := P[m] = Product[Product[1/(1-x^(p^k)), {k, 1, m}], {p, Prime[Range[PrimePi[nmax]]]}]/(1-x)+O[x]^nmax // CoefficientList[ #, x]&; P[1]; P[m=2]; While[P[m] != P[m-1], m++]; P[m] (* Jean-François Alcover, Aug 31 2016 *)
-
PARI
lista(m) = {x = t + t*O(t^m); gf = prod(k=1, m, if (isprimepower(k), 1/(1-x^k), 1))/(1-x); for (n=0, m, print1(polcoeff(gf, n, t), ", "));} \\ Michel Marcus, Mar 09 2013
-
Python
from functools import lru_cache from sympy import factorint @lru_cache(maxsize=None) def A023893(n): @lru_cache(maxsize=None) def c(n): return sum((p**(e+1)-p)//(p-1) for p,e in factorint(n).items())+1 return (c(n)+sum(c(k)*A023893(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
Formula
G.f.: (Product_{p prime} Product_{k>=1} 1/(1-x^(p^k))) / (1-x).