A023894 Number of partitions of n into prime power parts (1 excluded).
1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 23, 29, 37, 44, 54, 66, 80, 96, 115, 138, 165, 196, 231, 275, 322, 380, 443, 520, 607, 705, 819, 950, 1099, 1268, 1461, 1681, 1932, 2214, 2533, 2898, 3305, 3768, 4285, 4872, 5530, 6267, 7094, 8022, 9060
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 28 2022: (Start) The a(0) = 1 through a(9) = 7 partitions: () . (2) (3) (4) (5) (33) (7) (8) (9) (22) (32) (42) (43) (44) (54) (222) (52) (53) (72) (322) (332) (333) (422) (432) (2222) (522) (3222) (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- E. Grosswald, Partitions into prime powers
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],And@@PrimePowerQ/@#&]],{n,0,30}] (* Gus Wiseman, Jul 28 2022 *)
-
PARI
is_primepower(n)= {ispower(n, , &n); isprime(n)} lista(m) = {x = t + t*O(t^m); gf = prod(k=1, m, if (is_primepower(k), 1/(1-x^k), 1)); for (n=0, m, print1(polcoeff(gf, n, t), ", "));} \\ Michel Marcus, Mar 09 2013
-
Python
from functools import lru_cache from sympy import factorint @lru_cache(maxsize=None) def A023894(n): @lru_cache(maxsize=None) def c(n): return sum((p**(e+1)-p)//(p-1) for p,e in factorint(n).items()) return (c(n)+sum(c(k)*A023894(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
Formula
G.f.: Prod(p prime, Prod(k >= 1, 1/(1-x^(p^k))))