cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023895 Number of partitions of n into composite parts.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 4, 1, 4, 2, 7, 2, 9, 3, 12, 6, 15, 6, 23, 11, 26, 15, 37, 19, 48, 26, 61, 39, 78, 47, 105, 65, 126, 88, 167, 111, 211, 146, 264, 196, 331, 241, 426, 318, 519, 408, 657, 511, 820, 651, 1010, 833, 1252, 1028, 1564, 1301, 1900
Offset: 0

Views

Author

Keywords

Comments

First differences of A002095. - Emeric Deutsch, Apr 03 2006
a(n+1) > a(n) for n > 108. - Reinhard Zumkeller, Aug 22 2007

Examples

			a(12) = 4 because 12 = 4 + 4 + 4 = 6 + 6 = 4 + 8 = 12 (itself a composite number).
		

Crossrefs

Cf. A002808.
Cf. A002095.
Cf. A132456.
Cf. A204389.

Programs

  • Haskell
    a023895 = p a002808_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 15 2012
  • Maple
    g:=(1-x)*product((1-x^ithprime(j))/(1-x^j),j=1..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..62); # Emeric Deutsch, Apr 03 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
           b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, May 29 2013
  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; CoefficientList[ Series[1/Product[1 - x^Composite[i], {i, 1, 50}], {x, 0, 75}], x]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Formula

G.f.: (1-x)*Product_{j>=1} (1-x^prime(j))/(1-x^j). - Emeric Deutsch, Apr 03 2006

Extensions

More terms from Reinhard Zumkeller, Aug 22 2007