cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A345657 Theta series of the canonical laminated lattice LAMBDA_26.

Original entry on oeis.org

1, 0, 0, 0, 196848, 24576, 17356032, 6782976, 448438518, 274735104, 5823343872, 4366565376, 48362165472, 39912726528, 292010062848, 253343072256, 1393763244336, 1241347399680, 5550621292032, 5010361122816
Offset: 0

Views

Author

Andy Huchala, Jun 21 2021

Keywords

Comments

Theta series is an element of the space of modular forms on Gamma_1(24) with Kronecker character -3 in modulus 24, weight 13, and dimension 52 over the integers.

Examples

			1 + 196848*q^8 + 24576*q^10 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 178.

Crossrefs

Programs

  • Magma
    L := Lattice("Lambda", 26);
    T := ThetaSeries(L,14);
    C := Coefficients(T);
    [C[2*i-1] : i in [1..8]];

Extensions

a(17)-a(19) from Robin Visser, Sep 24 2023

A345660 Theta series of the canonical laminated lattice LAMBDA_29.

Original entry on oeis.org

1, 0, 0, 0, 198506, 163840, 20662272, 45481984, 745402040, 1904738304, 13582315520, 32267304960, 152158214640, 321893203968, 1194291679232, 2263580016640, 7176091448362
Offset: 0

Views

Author

Andy Huchala, Jun 27 2021

Keywords

Comments

Theta series is an element of the space of modular forms on Gamma_0(16) of weight 29/2 and dimension 30 over the integers.

Examples

			G.f.: 1 + 198506*q^8 + 163840*q^10 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 179.

Crossrefs

Programs

  • Magma
    L := Lattice("Lambda", 29);
    T := ThetaSeries(L, 14);
    C := Coefficients(T);
    [C[2*i-1] : i in [1..8]];

Extensions

a(14)-a(16) from Robin Visser, Sep 24 2023

A345661 Theta series of the canonical laminated lattice LAMBDA_30.

Original entry on oeis.org

1, 0, 0, 0, 200046, 294912, 23779584, 82378752, 1032132696, 3570794496, 21539288064, 64122912768, 266965225878, 683889819648, 2273486860032, 5134106886144
Offset: 0

Views

Author

Andy Huchala, Jun 29 2021

Keywords

Comments

Theta series is an element of the space of modular forms on Gamma_1(24) with Kronecker character -3 in modulus 24, weight 15, and dimension 60 over the integers.

Examples

			1 + 200046*q^8 + 294912*q^10 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 179.

Crossrefs

Programs

  • Magma
    L := Lattice("Lambda", 30);
    T := ThetaSeries(L,14);
    C := Coefficients(T);
    [C[2*i-1] : i in [1..8]];

Extensions

a(11)-a(15) from Robin Visser, Sep 24 2023

A345662 Theta series of the canonical laminated lattice LAMBDA_31.

Original entry on oeis.org

1, 0, 0, 0, 202692, 516096, 29046528, 145195008, 1538419918, 6537101312, 36946043904, 124680077312, 511130138792, 1419643330560, 4752698632192
Offset: 0

Views

Author

Andy Huchala, Jun 29 2021

Keywords

Comments

Theta series is an element of the space of modular forms on Gamma_1(32) with Kronecker character 8 in modulus 32, weight 31/2, and dimension 62 over the integers.
As of version 2.26-4, the largest rank of a laminated lattice which is recognized by Magma is 31, but laminated lattices of larger rank exist (see Conway and Sloane reference).

Examples

			G.f.: 1 + 202692*q^8 + 516096*q^10 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 179.

Crossrefs

Programs

  • Magma
    L := Lattice("Lambda", 31);
    T := ThetaSeries(L,14);
    C := Coefficients(T);
    [C[2*i-1] : i in [1..8]];

Extensions

a(11)-a(14) from Robin Visser, Sep 24 2023
Showing 1-4 of 4 results.