A024011 Numbers k such that the k-th prime divides the sum of the first k primes.
1, 3, 20, 31464, 22096548, 1483892396791177
Offset: 1
Examples
The third prime, 5, divides 2 + 3 + 5 = 10, so 3 is in the sequence. 2 + 3 + 5 + 7 = 17, which is not divisible by the fourth prime, 7, so 4 is not in the sequence.
Programs
-
Mathematica
s = 0; For[i = 1, i <= 5 * 10^7, i++, s = s + Prime[i]; If[Mod[s, Prime[i + 1]] == 0, Print[i + 1]]] With[{prs = Prime[Range[221000000]]}, PrimePi /@ Transpose[Select[ Thread[ {Accumulate[prs], prs}], Divisible[#[[1]], #[[2]]] &]][[2]]] (* Harvey P. Dale, Jul 23 2013 *) nMax = 50000; primeSums = Accumulate[Prime[Range[nMax]]]; Select[Range[nMax], Divisible[primeSums[[#]], Prime[#]] &] (* Alonso del Arte, Nov 11 2019 *)
-
PARI
s=0; t=0; for(w=2,1000000000,if(isprime(w),s=s+w; t=t+1; if(s%w,print(t)),))
Extensions
a(5) from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 14 2000
a(6) from Paul W. Dyson, Apr 16 2022
Comments