A024130 a(n) = 11^n - n^3.
1, 10, 113, 1304, 14577, 160926, 1771345, 19486828, 214358369, 2357946962, 25937423601, 285311669280, 3138428374993, 34522712141734, 379749833580497, 4177248169412276, 45949729863568065, 505447028499288858, 5559917313492225649, 61159090448414539432
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (15,-50,70,-45,11).
Programs
-
Magma
[11^n-n^3: n in [0..20]]; // Vincenzo Librandi, Jul 01 2011
-
Mathematica
Table[11^n-n^3,{n,0,30}] (* or *) LinearRecurrence[{15,-50,70,-45,11},{1,10,113,1304,14577},30] (* Harvey P. Dale, Jul 30 2018 *)
-
PARI
a(n)=11^n-n^3 \\ Charles R Greathouse IV, Jul 01 2011
-
PARI
Vec((1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)) + O(x^40)) \\ Colin Barker, Oct 11 2018
Formula
From Colin Barker, Oct 11 2018: (Start)
G.f.: (1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)).
a(n) = 15*a(n-1) - 50*a(n-2) + 70*a(n-3) - 45*a(n-4) + 11*a(n-5) for n>4.
(End)