cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024173 Integer part of ((4th elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,...,n)).

Original entry on oeis.org

0, 0, 0, 3, 9, 21, 41, 72, 119, 185, 275, 395, 549, 744, 987, 1285, 1645, 2076, 2586, 3185, 3882, 4688, 5612, 6667, 7863, 9213, 10731, 12428, 14318, 16416, 18737, 21295, 24106, 27187, 30553, 34223, 38214, 42543, 47231, 52295, 57756, 63633, 69948, 76721
Offset: 2

Views

Author

Keywords

Examples

			a(4) = floor(24/35) = 0; a(5) = floor(274/85) = 3. - _R. J. Mathar_, Sep 15 2009
		

Programs

  • GAP
    List([2..50],n->Int((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2))); # Muniru A Asiru, May 19 2018
  • Maple
    seq(floor((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2)),n=2..50); # Muniru A Asiru, May 19 2018
  • Mathematica
    Table[Floor[1/240 (n - 3) (n - 2) (15 n^3 + 15 n^2 - 10 n - 8)/ (2 + 3 n)], {n, 2, 45}] (* Ivan Neretin, May 19 2018 *)

Formula

a(n)= floor(A000915(n-3)/A000914(n-1)). - R. J. Mathar, Sep 15 2009
a(n) = floor((1/240) * (n-3) * (n-2) * (15*n^3 + 15*n^2 - 10*n - 8) / (2 + 3*n)). - Ivan Neretin, May 19 2018

Extensions

Offset changed to 2 by R. J. Mathar, Sep 15 2009