A024173 Integer part of ((4th elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,...,n)).
0, 0, 0, 3, 9, 21, 41, 72, 119, 185, 275, 395, 549, 744, 987, 1285, 1645, 2076, 2586, 3185, 3882, 4688, 5612, 6667, 7863, 9213, 10731, 12428, 14318, 16416, 18737, 21295, 24106, 27187, 30553, 34223, 38214, 42543, 47231, 52295, 57756, 63633, 69948, 76721
Offset: 2
Keywords
Examples
a(4) = floor(24/35) = 0; a(5) = floor(274/85) = 3. - _R. J. Mathar_, Sep 15 2009
Links
- Ivan Neretin, Table of n, a(n) for n = 2..10000
Programs
-
GAP
List([2..50],n->Int((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2))); # Muniru A Asiru, May 19 2018
-
Maple
seq(floor((1/240)*(n-3)*(n-2)*(15*n^3+15*n^2-10*n-8)/(3*n+2)),n=2..50); # Muniru A Asiru, May 19 2018
-
Mathematica
Table[Floor[1/240 (n - 3) (n - 2) (15 n^3 + 15 n^2 - 10 n - 8)/ (2 + 3 n)], {n, 2, 45}] (* Ivan Neretin, May 19 2018 *)
Formula
a(n) = floor((1/240) * (n-3) * (n-2) * (15*n^3 + 15*n^2 - 10*n - 8) / (2 + 3*n)). - Ivan Neretin, May 19 2018
Extensions
Offset changed to 2 by R. J. Mathar, Sep 15 2009