cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024183 Second elementary symmetric function of 3,4,...,n+3.

Original entry on oeis.org

12, 47, 119, 245, 445, 742, 1162, 1734, 2490, 3465, 4697, 6227, 8099, 10360, 13060, 16252, 19992, 24339, 29355, 35105, 41657, 49082, 57454, 66850, 77350, 89037, 101997, 116319, 132095, 149420, 168392, 189112, 211684, 236215, 262815, 291597, 322677, 356174
Offset: 1

Views

Author

Keywords

Programs

  • GAP
    List([1..40],n->n*(n+1)*(3*n^2+35*n+106)/24); # Muniru A Asiru, May 19 2018
  • Magma
    [n*(n+1)*(3*n^2+35*n+106)/24: n in [1..40]]; // Vincenzo Librandi, May 03 2018
    
  • Maple
    seq(n*(n+1)*(3*n^2+35*n+106)/24,n=1..40); # Muniru A Asiru, May 19 2018
  • Mathematica
    f[k_] := k + 2; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 30}]  (* A024183 *)
    (* Clark Kimberling, Dec 31 2011 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {12, 47, 119, 245, 445}, 40] (* Vincenzo Librandi, May 03 2018 *)
  • PARI
    Vec(-x*(4*x^2-13*x+12)/(x-1)^5 + O(x^100)) \\ Colin Barker, Aug 15 2014
    

Formula

a(n) = n*(n+1)*(3*n^2 + 35*n + 106)/24.
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-2) = f(n,n-2,3), for n >= 3. - Milan Janjic, Dec 20 2008
From Colin Barker, Aug 15 2014: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(4*x^2-13*x+12)/(x-1)^5. (End)
E.g.f.: exp(x)*x*(6 + x)*(48 + 38*x + 3*x^2)/24. - Elmo R. Oliveira, Aug 15 2025