cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024198 4th elementary symmetric function of the first n+3 odd positive integers.

Original entry on oeis.org

105, 1689, 12139, 57379, 208054, 626934, 1646778, 3889578, 8439783, 17085783, 32645613, 59394517, 103613692, 174281212, 283927812, 449681892, 694529781, 1048818981, 1552033791, 2254874391, 3221672146, 4533175570, 6289743070
Offset: 1

Views

Author

Keywords

Crossrefs

From Johannes W. Meijer, Jun 08 2009: (Start)
Equals fifth right hand column of A028338 triangle.
Equals fifth left hand column of A109692 triangle.
Equals fifth right hand column of A161198 triangle divided by 2^m.
(End)

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{105,1689,12139,57379,208054,626934,1646778,3889578,8439783},30] (* Harvey P. Dale, May 28 2018 *)
  • PARI
    Vec(-x*(x^4+112*x^3+718*x^2+744*x+105)/(x-1)^9 + O(x^100)) \\ Colin Barker, Aug 15 2014

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(15*n^4+150*n^3+515*n^2+672*n+223)/360.
G.f.: -x*(x^4+112*x^3+718*x^2+744*x+105) / (x-1)^9. - Colin Barker, Aug 15 2014
a(n) = A000332(n+3) * (15*n^4+150*n^3+515*n^2+672*n+223)/15 . - R. J. Mathar, Oct 01 2016
a(n) = A(n+4, n-1), n >= 1 (fifth diagonal). See a crossref. below. - Wolfdieter Lang, Jul 21 2017
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Wesley Ivan Hurt, Jul 09 2025