cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024219 a(n) = floor( (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ), where S(n) = {first n+1 positive integers congruent to 1 mod 3}.

Original entry on oeis.org

0, 3, 7, 12, 19, 28, 38, 49, 62, 77, 93, 110, 129, 150, 172, 195, 220, 247, 275, 304, 335, 368, 402, 437, 474, 513, 553, 594, 637, 682, 728, 775, 824, 875, 927, 980, 1035, 1092, 1150, 1209, 1270, 1333, 1397, 1462, 1529, 1598, 1668, 1739, 1812, 1887, 1963, 2040
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-4,4,-3,1},{0,3,7,12,19},60] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    a(n)=floor(sum(j=0, n, sum(k=j+1, n, (3*j+1)*(3*k+1)))/sum(i=0, n, (3*i+1))) \\ Andrew Howroyd, Aug 12 2018
    
  • PARI
    a(n) = floor(n*(9*n^2+9*n-2)/(4*(3*n+2))); \\ Andrew Howroyd, Aug 12 2018

Formula

From R. J. Mathar, Oct 08 2011: (Start)
Conjecture: a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5);
g.f.: x^2*(-3+2*x-3*x^2+x^3) / ( (x^2+1)*(x-1)^3 ). (End)
From Andrew Howroyd, Aug 12 2018: (Start)
The above conjectures are true.
a(n) = floor(A024212(n) / A000326(n+1)).
a(n) = floor(n*(9*n^2 + 9*n - 2)/(4*(3*n + 2))).
(End)

Extensions

More terms from Joshua Zucker, May 20 2006