A024235 Expansion of e.g.f. tan(x)*sin(x)/2 (even powers only).
0, 1, 2, 31, 692, 25261, 1351382, 99680491, 9695756072, 1202439837721, 185185594118762, 34674437196568951, 7757267081778543452, 2043536254646561946181, 626129820701814932734142, 220771946624511552276841411, 88759695789769644718332394832
Offset: 0
Examples
tan(x)*sin(x)/2 = 1/2*x^2 + 1/12*x^4 + 31/720*x^6 + 173/10080*x^8 + ... From _Peter Bala_, Nov 10 2016: (Start) Asymptotic expansion at N = 100000. The truncated series 2*Sum_{k = 1..N/2} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)) = 0.78539816339744(9)309615660(6)4581987(603) 104929(1657)84377... to 50 digits. The bracketed digits show where this decimal expansion differs from that of Pi/4. The numbers -1, 2, -31, 692 must be added to the bracketed numbers to give the correct decimal expansion to 50 digits: Pi/4 = 0.78539816339744(8)309615660(8)4581987(572)104929(2349)84377.... (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..50
- J. M. Borwein, P. B. Borwein, K. Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
- Eric Weisstein's World of Mathematics, Euler Polynomial.
Programs
-
Maple
A000364 := proc(n) abs(euler(2*n)); end proc: seq(1/2*(A000364(n) - (-1)^n), n = 0..20); # Peter Bala, Nov 10 2016
-
Mathematica
With[{nn=30},Take[CoefficientList[Series[Tan[x]*Sin[x]/2,{x,0,nn}], x]Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Apr 27 2012 *)
Formula
G.f.: 1/2*(G(0) - 1/(1+x)) where G(k) = 1 - x*(2*k+1)^2/(1 - x*(2*k+2)^2/G(k+1) ); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 09 2013
a(n) ~ (2*n)! * (2/Pi)^(2*n+1). - Vaclav Kotesovec, Jan 23 2015
From Peter Bala, Nov 10 2016: (Start)
a(n) = 1/2*(A000364(n) - (-1)^n).
a(n) = 1/8*(-4)^n*( -E(2*n,3/2) + 2*E(2*n,1/2) - E(2*n,-1/2) ), where E(n,x) is the Euler polynomial of order n.
G.f. 1/2!*sin^2(x)/cos(x) = x^2/2! + 2*x^4/4! + 31*x^6/6! + 692*x^8/8! + ....
O.g.f. for a signed version of the sequence: Sum_{n >= 0} ( 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n, k)/((1 - (2*k - 1)*x)*(1 - (2*k + 1)*x)*(1 - (2*k + 3)*x)) ) = 1 - 2*x^2 + 31*x^4 - 692*x^6 + .... (End)
Extensions
Extended and signs tested Mar 15 1997.
More terms from Harvey P. Dale, Apr 27 2012
Comments