cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024312 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 3).

Original entry on oeis.org

9, 12, 31, 38, 70, 82, 130, 148, 215, 240, 329, 362, 476, 518, 660, 712, 885, 948, 1155, 1230, 1474, 1562, 1846, 1948, 2275, 2392, 2765, 2898, 3320, 3470, 3944, 4112, 4641, 4828, 5415, 5622, 6270, 6498, 7210, 7460, 8239, 8512, 9361, 9658, 10580, 10902, 11900, 12248, 13325
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(&+[j*(n+5-j): j in [3..Floor((n+5)/2)]]) : n in [1..50]]; // G. C. Greubel, Jan 17 2022
    
  • Mathematica
    Table[Sum[j*(n-j+5), {j, 3, Floor[(n+5)/2]}], {n, 50}] (* G. C. Greubel, Jan 17 2022 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{9,12,31,38,70,82,130},60] (* Harvey P. Dale, Aug 23 2024 *)
  • PARI
    a(n)=((75+182*n+63*n^2+4*n^3)-3*(25+10*n+n^2)*(-1)^n)/48 \\ Charles R Greathouse IV, Oct 21 2022
  • Sage
    [( (75 +182*n +63*n^2 +4*n^3) - 3*(25 +10*n +n^2)*(-1)^n )/48 for n in (1..50)] # G. C. Greubel, Jan 17 2022
    

Formula

From G. C. Greubel, Jan 17 2022: (Start)
a(n) = ( (75 + 182*n + 63*n^2 + 4*n^3) - 3*(25 + 10*n + n^2)*(-1)^n )/48.
G.f.: x*(9 + 3*x - 8*x^2 - 2*x^3 + 2*x^4)/((1-x)^4 * (1+x)^3).
a(n) = (-60 - 18*n + (14 + 3*n)*f(n) + 3*(4+n)*f(n)^2 - 2*f(n)^3)/6, where f(n) = floor((n+5)/2). (End)