cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024320 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (1, p(1), p(2), ... ).

Original entry on oeis.org

0, 0, 2, 3, 5, 7, 11, 13, 24, 30, 36, 46, 50, 60, 70, 74, 103, 117, 131, 139, 157, 171, 177, 193, 207, 221, 278, 294, 310, 330, 348, 360, 390, 408, 424, 448, 470, 486, 573, 611, 625, 653, 673, 699, 739, 761, 781, 803, 835, 863, 891, 925, 1054, 1078, 1104, 1136, 1180, 1214
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
    p:= func< n | n eq 1 select 1 else NthPrime(n-1) >;
    [ (&+[A023531(j)*p(n-j+1): j in [1..Floor((n+1)/2)]]) : n in [1..60]]; // G. C. Greubel, Jan 19 2022
    
  • Mathematica
    A023531[n_]:= SquaresR[1, 8*n+9]/2;
    p[n_]:= If[n==1, 1, Prime[n-1]];
    a[n_]:= Sum[A023531[j]*p[n-j+1], {j, Floor[(n+1)/2]}];
    Table[a[n], {n, 60}] (* G. C. Greubel, Jan 19 2022 *)
  • Sage
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    def p(n):
        if (n==1): return 1
        else: return nth_prime(n-1)
    [sum( A023531(j)*p(n-j+1) for j in (1..floor((n+1)/2)) ) for n in (1..60)] # G. C. Greubel, Jan 19 2022

Formula

a(n) = A023531(1) + Sum_{j=2..floor((n+1)/2)} A023531(j)*Prime(n-j+1). - G. C. Greubel, Jan 19 2022