cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024324 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A000201 (lower Wythoff sequence).

Original entry on oeis.org

0, 0, 3, 4, 6, 8, 9, 11, 20, 23, 27, 29, 33, 37, 39, 43, 60, 65, 70, 74, 80, 84, 89, 94, 98, 104, 131, 137, 143, 150, 157, 163, 169, 176, 183, 189, 195, 202, 241, 248, 256, 265, 272, 281, 289, 296, 306, 313, 321, 329, 337, 346, 397, 406, 416, 425, 436, 445, 454, 466, 474, 484
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    b:= func< n,j | IsIntegral((Sqrt(8*j+9) -3)/2) select Fibonacci(n-j+1) else 0 >;
    A024324:= func< n | (&+[b(n,j): j in [1..Floor((n+1)/2)]]) >;
    [A024324(n) : n in [1..80]]; // G. C. Greubel, Jan 28 2022
    
  • Mathematica
    Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += Floor[n*GoldenRatio^2]; n -= m++]; t, {n, 120}] (* G. C. Greubel, Jan 28 2022 *)
  • PARI
    my(phi=quadgen(5)); a(n) = my(L=n>>1,m=2,ret=0); n--; while(n>L, ret += floor(n*phi); n-=(m++)); ret; \\ Kevin Ryde, Feb 03 2022
  • Sage
    def b(n,j): return floor( (n+1-j)*(1+sqrt(5))/2 ) if ((sqrt(8*j+9) -3)/2).is_integer() else 0
    def A024324(n): return sum( b(n,k) for k in (1..((n+1)//2)) )
    [A024324(n) for n in (1..80)] # G. C. Greubel, Jan 28 2022
    

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A000201(n-j+1).

Extensions

a(62) corrected by Sean A. Irvine, Jun 27 2019