A024324 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A000201 (lower Wythoff sequence).
0, 0, 3, 4, 6, 8, 9, 11, 20, 23, 27, 29, 33, 37, 39, 43, 60, 65, 70, 74, 80, 84, 89, 94, 98, 104, 131, 137, 143, 150, 157, 163, 169, 176, 183, 189, 195, 202, 241, 248, 256, 265, 272, 281, 289, 296, 306, 313, 321, 329, 337, 346, 397, 406, 416, 425, 436, 445, 454, 466, 474, 484
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
b:= func< n,j | IsIntegral((Sqrt(8*j+9) -3)/2) select Fibonacci(n-j+1) else 0 >; A024324:= func< n | (&+[b(n,j): j in [1..Floor((n+1)/2)]]) >; [A024324(n) : n in [1..80]]; // G. C. Greubel, Jan 28 2022
-
Mathematica
Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += Floor[n*GoldenRatio^2]; n -= m++]; t, {n, 120}] (* G. C. Greubel, Jan 28 2022 *)
-
PARI
my(phi=quadgen(5)); a(n) = my(L=n>>1,m=2,ret=0); n--; while(n>L, ret += floor(n*phi); n-=(m++)); ret; \\ Kevin Ryde, Feb 03 2022
-
Sage
def b(n,j): return floor( (n+1-j)*(1+sqrt(5))/2 ) if ((sqrt(8*j+9) -3)/2).is_integer() else 0 def A024324(n): return sum( b(n,k) for k in (1..((n+1)//2)) ) [A024324(n) for n in (1..80)] # G. C. Greubel, Jan 28 2022
Extensions
a(62) corrected by Sean A. Irvine, Jun 27 2019