A024356 Determinant of Hankel matrix of the first 2n-1 prime numbers.
1, 2, 1, -2, 0, 288, -1728, -26240, 222272, 1636864, -8434688, -61820416, 238704640, 544024576, 3294658560, -71814283264, 359994671104, 17294535000064, 302441193013248, -2311203985948672, -11313883306262528, -31078379553816576, 26574426771056230400
Offset: 0
Keywords
Examples
a(2) = 1 because det[[2,3],[3,5]] = 1. From _Klaus Brockhaus_, May 12 2010: (Start) a(5) = determinant(M) = 288 where M is the matrix [ 2 3 5 7 11] [ 3 5 7 11 13] [ 5 7 11 13 17] [ 7 11 13 17 19] [11 13 17 19 23] . (End)
Links
- Klaus Brockhaus, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A290302.
Programs
-
Magma
Hankel_prime:=function(n); M:=ScalarMatrix(n, 0); for j in [1..n] do for k in [1..n] do M[j, k]:=NthPrime(j+k-1); end for; end for; return M; end function; [ Determinant(Hankel_prime(n)): n in [0..22] ]; [1] cat [ Determinant( SymmetricMatrix( &cat[ [ NthPrime(j+k-1): k in [1..j] ]: j in [1..n] ] ) ): n in [1..22] ]; // Klaus Brockhaus, May 12 2010
-
Mathematica
a[n_]:=Det[Table[Prime[i+j-1],{i,n},{j,n}]]; Join[{1},Array[a, 20]] (* Stefano Spezia, Feb 03 2024 *)
-
PARI
for (i=0,20,print1(","matdet(matrix(i,i,X,Y,prime(X+Y-1))))) \\ Jon Perry, Mar 22 2004
Comments