cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024358 Sum of the sizes of binary subtrees of the perfect binary tree of height n.

Original entry on oeis.org

0, 1, 8, 105, 6136, 8766473, 8245941529080, 3508518207951157937469961, 311594265746788494170062926869662848646207622648, 1217308491239906829392988008143949647398943617188660186130545502913055217344025410733271773705
Offset: 0

Views

Author

Cyril Banderier, Jun 09 2000

Keywords

Comments

Size of binary tree = number of internal nodes.

Crossrefs

Programs

  • Maple
    B:= proc(n) B(n):= `if`(n<0, 0, expand(1+x*B(n-1)^2)) end:
    a:= n-> subs(x=1, diff(B(n), x)):
    seq(a(n), n=0..9);  # Alois P. Heinz, Jul 12 2019
  • Mathematica
    B[n_] := If[n<0, 0, Expand[1+x*B[n-1]^2]];
    a[n_] := D[B[n], x] /. x -> 1;
    Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Oct 13 2022, after Alois P. Heinz *)

Formula

a(n) = B'n(1) where B{n+1}(x) = 1 + x*B_n(x)^2.
From Alois P. Heinz, Jul 12 2019: (Start)
a(n) = Sum_{k=0..2^n-1} (2^n-1-k) * A309049(2^n-1,k).
a(n) = A309052(2^n-1). (End)

Extensions

a(0) changed to 0 by Alois P. Heinz, Jul 12 2019