A024358 Sum of the sizes of binary subtrees of the perfect binary tree of height n.
0, 1, 8, 105, 6136, 8766473, 8245941529080, 3508518207951157937469961, 311594265746788494170062926869662848646207622648, 1217308491239906829392988008143949647398943617188660186130545502913055217344025410733271773705
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..12
- Cyril Banderier, On the sum of the sizes of binary subtrees of a perfect binary tree, personal note, 2000.
Programs
-
Maple
B:= proc(n) B(n):= `if`(n<0, 0, expand(1+x*B(n-1)^2)) end: a:= n-> subs(x=1, diff(B(n), x)): seq(a(n), n=0..9); # Alois P. Heinz, Jul 12 2019
-
Mathematica
B[n_] := If[n<0, 0, Expand[1+x*B[n-1]^2]]; a[n_] := D[B[n], x] /. x -> 1; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Oct 13 2022, after Alois P. Heinz *)
Formula
a(n) = B'n(1) where B{n+1}(x) = 1 + x*B_n(x)^2.
From Alois P. Heinz, Jul 12 2019: (Start)
a(n) = Sum_{k=0..2^n-1} (2^n-1-k) * A309049(2^n-1,k).
a(n) = A309052(2^n-1). (End)
Extensions
a(0) changed to 0 by Alois P. Heinz, Jul 12 2019
Comments