cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024359 Number of primitive Pythagorean triangles with short leg n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 1, 1, 2, 0, 1, 3, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 1, 3, 2, 0, 2
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A takes value n.
Number of times n occurs in A020884.
a(A139544(n)) = 0; a(A024352(n)) > 0. - Reinhard Zumkeller, Nov 09 2012

Crossrefs

Cf. A020884, A024352, A024360, A024361, A132404 (where records occur), A139544.

Programs

  • Haskell
    a024359_list = f 0 1 a020884_list where
       f c u vs'@(v:vs) | u == v = f (c + 1) u vs
                        | u /= v = c : f 0 (u + 1) vs'
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Mathematica
    solns[a_] := Module[{b, c, soln}, soln = Reduce[a^2 + b^2 == c^2 && a < b && c > 0 && GCD[a, b, c] == 1, {b, c}, Integers]; If[soln === False, 0, If[soln[[1, 1]] === b, 1, Length[soln]]]]; Table[solns[n], {n, 100}]
    (* Second program: *)
    a[n_] := Module[{s = 0, b, c, d, g}, Do[g = Quotient[n^2, d]; If[d <= g && Mod[d+g, 2] == 0, c = Quotient[d+g, 2]; b = g-c; If[n < b && GCD[b, c] == 1, s++]], {d, Divisors[n^2]}]; s]; Array[a, 100] (* Jean-François Alcover, Apr 27 2019, from PARI *)
  • PARI
    nppt(a) = {
      my(s=0, b, c, d, g);
      fordiv(a^2, d,
        g=a^2\d;
        if(d<=g && (d+g)%2==0,
          c=(d+g)\2; b=g-c;
          if(aColin Barker, Oct 25 2015

Formula

a(n) = A024361(n) - A024360(n). - Ray Chandler, Feb 03 2020