cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024362 Number of primitive Pythagorean triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times C takes value n.
a(A137409(n)) = 0; a(A008846(n)) > 0; a(A120960(n)) = 1; a(A024409(n)) > 1; a(A159781(n)) = 4. - Reinhard Zumkeller, Dec 02 2012
If the formula given below is used one is sure to find all a(n) values for hypotenuses n <= N if the summation indices r and s are cut off at rmax(N) = floor((sqrt(N-4)+1)/2) and smax(N) = floor(sqrt(N-1)/2). a(n) is the number of primitive Pythagorean triples with hypotenuse n modulo catheti exchange. - Wolfdieter Lang, Jan 10 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 116-117, 1966.

Crossrefs

Programs

  • Haskell
    a024362 n = sum [a010052 y | x <- takeWhile (< nn) $ tail a000290_list,
                                 let y = nn - x, y <= x, gcd x y == 1]
                where nn = n ^ 2
    -- Reinhard Zumkeller, Dec 02 2012
    
  • Maple
    f:= proc(n) local F;
       F:= numtheory:-factorset(n);
       if map(t -> t mod 4, F) <> {1} then return 0 fi;
       2^(nops(F)-1)
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Jan 11 2016
  • Mathematica
    Table[a0=IntegerExponent[n,2]; If[n==1 || a0>0, cnt=0, m=n/2^a0; p=Transpose[FactorInteger[m]][[1]]; c=Count[p, _?(Mod[#,4]==1 &)]; If[c==Length[p], cnt=2^(c-1), 0]]; cnt, {n,100}]
    a[n_] := If[n==1||EvenQ[n]||Length[Select[FactorInteger[n], Mod[#[[1]], 4]==3 &]] >0, 0, 2^(Length[FactorInteger[n]]-1)]; Array[a, 100] (* Frank M Jackson, Jan 28 2018 *)
  • PARI
    a(n)={my(m=0,k=n,n2=n*n,k2,l2);
    while(1,k=k-1;k2=k*k;l2=n2-k2;if(l2>k2,break);if(issquare(l2),if(gcd(n,k)==1,m++)));  return(m);} \\ Stanislav Sykora, Mar 23 2015

Formula

a(n) = [q^n] T(q), n >= 1, where T(q) = Sum_{r>=1,s>=1} rpr(2*r-1, 2*s)*q^c(r,s), with rpr(k,l) = 1 if gcd(k,l) = 1, otherwise 0, and c(r,s) = (2*r-1)^2 + (2s)^2. - Wolfdieter Lang, Jan 10 2016
If all prime factors of n are in A002144 then a(n) = 2^(A001221(n)-1), otherwise a(n) = 0. - Robert Israel, Jan 11 2016
a(4*n+1) = A106594(n), other terms are 0. - Andrey Zabolotskiy, Jan 21 2022