cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A046080 a(n) is the number of integer-sided right triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Or number of ways n^2 can be written as the sum of two positive squares: a(5) = 1: 3^2 + 4^2 = 5^2; a(25) = 2: 7^2 + 24^2 = 15^2 + 20^2 = 25^2. - Alois P. Heinz, Aug 01 2019

References

  • A. H. Beiler, Recreations in the Theory of Numbers, New York: Dover, pp. 116-117, 1966.

Crossrefs

First differs from A083025 at n=65.
A088111 gives records; A088959 gives where records occur.
Partial sums: A224921.

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]);
      1/2*(mul(2*t[2]+1, t=F)-1)
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 18 2016
  • Mathematica
    a[1] = 0; a[n_] := With[{fi = Select[ FactorInteger[n], Mod[#[[1]], 4] == 1 & ][[All, 2]]}, (Times @@ (2*fi+1)-1)/2]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Feb 06 2012, after first formula *)
  • PARI
    a(n)={my(m=0,k=n,n2=n*n,k2,l2);
    while(1,k=k-1;k2=k*k;l2=n2-k2;if(l2>k2,break);if(issquare(l2),m++));return(m)} \\ brute force, Stanislav Sykora, Mar 18 2015
    
  • PARI
    {a(n) = if( n<1, 0, sum(k=1, sqrtint(n^2 \ 2), issquare(n^2 - k^2)))}; /* Michael Somos, Mar 29 2015 */
    
  • PARI
    a(n) = {my(f = factor(n/(2^valuation(n, 2)))); (prod(k=1, #f~, if ((f[k,1] % 4) == 1, 2*f[k,2] + 1, 1)) - 1)/2;} \\ Michel Marcus, Mar 08 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A046080(n): return prod((e<<1)+1 for p,e in factorint(n).items() if p&3==1)>>1 # Chai Wah Wu, Sep 06 2022

Formula

Let n = 2^e_2 * product_i p_i^f_i * product_j q_j^g_j where p_i == 1 mod 4, q_j == 3 mod 4; then a(n) = (1/2)*(product_i (2*f_i + 1) - 1). - Beiler, corrected
8*a(n) + 4 = A046109(n) for n > 0. - Ralf Stephan, Mar 14 2004
a(n) = 0 for n in A004144. - Lekraj Beedassy, May 14 2004
a(A084645(k)) = 1. - Ruediger Jehn, Jan 14 2022
a(A084646(k)) = 2. - Ruediger Jehn, Jan 14 2022
a(A084647(k)) = 3. - Jean-Christophe Hervé, Dec 01 2013
a(A084648(k)) = 4. - Jean-Christophe Hervé, Dec 01 2013
a(A084649(k)) = 5. - Jean-Christophe Hervé, Dec 01 2013
a(n) = A063725(n^2) / 2. - Michael Somos, Mar 29 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} [i^2 + k^2 = n^2], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Dec 10 2021
a(A002144(k)^n) = n. - Ruediger Jehn, Jan 14 2022

A008846 Hypotenuses of primitive Pythagorean triangles.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 169, 173, 181, 185, 193, 197, 205, 221, 229, 233, 241, 257, 265, 269, 277, 281, 289, 293, 305, 313, 317, 325, 337, 349, 353, 365, 373, 377, 389, 397, 401, 409, 421, 425, 433
Offset: 1

Views

Author

N. J. A. Sloane, Ralph Peterson (RALPHP(AT)LIBRARY.nrl.navy.mil)

Keywords

Comments

Numbers of the form x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.
Numbers n for which there is no solution to 4/n = 2/x + 1/y for integers y > x > 0. Related to A073101. - T. D. Noe, Sep 30 2002
Discovered by Frénicle (on Pythagorean triangles): Méthode pour trouver ..., page 14 on 44. First text of Divers ouvrages ... Par Messieurs de l'Académie Royale des Sciences, in-folio, 6+518+1 pp., Paris, 1693. Also A020882 with only one of doubled terms (first: 65). - Paul Curtz, Sep 03 2008
All divisors of terms are of the form 4*k+1 (products of members of A002144). - Zak Seidov, Apr 13 2011
A024362(a(n)) > 0. - Reinhard Zumkeller, Dec 02 2012
Closed under multiplication. Primitive elements are in A002144. - Jean-Christophe Hervé, Nov 10 2013
Not only the square of these numbers is equal to the sum of two nonzero squares, but the numbers themselves also are; this sequence is then a subsequence of A004431. - Jean-Christophe Hervé, Nov 10 2013
Conjecture: numbers p for which sqrt(-1) exists in the p-adic numbering system. For example the 5-adic number ...2431212, when squared, gives ...4444444, which is -1, and 5 is in the sequence. - Thierry Banel, Aug 19 2022
The above conjecture was proven true by George Bergman. 3 known facts: (1) prime factors of a(n) are equal to 1 mod 4, (2) modulo such primes, sqrt(-1) exists, (3) if sqrt(m) exists mod r, r being odd, this extends to sqrt(m) in the r-adic ring. - Thierry Banel, Jul 04 2025

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 10, 107.

Crossrefs

Subsequence of A004431 and of A000404 and of A339952; primitive elements: A002144.
Cf. A137409 (complement), disjoint union of A024409 and A120960.

Programs

  • Haskell
    a008846 n = a008846_list !! (n-1)
    a008846_list = filter f [1..] where
       f n = all ((== 1) . (`mod` 4)) $ filter ((== 0) . (n `mod`)) [1..n]
    -- Reinhard Zumkeller, Apr 27 2011
    
  • Maple
    for x from 1 by 2 to 50 do for y from 2 by 2 to 50 do if gcd(x,y) = 1 then print(x^2+y^2); fi; od; od; [ then sort ].
  • Mathematica
    Union[ Map[ Plus@@(#1^2)&, Select[ Flatten[ Array[ {2*#1, 2*#2-1}&, {10, 10} ], 1 ], GCD@@#1 == 1& ] ] ] (* Olivier Gérard, Aug 15 1997 *)
    lst = {}; Do[ If[ GCD[m, n] == 1, a = 2 m*n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[lst, c]], {m, 100}, {n, If[ OddQ@m, 2, 1], m - 1, 2}]; Take[ Union@ lst, 57] (* Robert G. Wilson v, May 02 2009 *)
    Union[Sqrt[#[[1]]^2+#[[2]]^2]&/@Union[Sort/@({Times@@#,(Last[#]^2-First[#]^2)/2}&/@ (Select[Subsets[Range[1,33,2],{2}],GCD@@#==1&]))]] (* Harvey P. Dale, Aug 26 2012 *)
  • PARI
    is(n)=Set(factor(n)[,1]%4)==[1] \\ Charles R Greathouse IV, Nov 06 2015
    
  • Python
    # for an array from the beginning
    from math import gcd, isqrt
    hypothenuses_upto = 433
    A008846 = set()
    for x in range(2, isqrt(hypothenuses_upto)+1):
        for y in range(min(x-1, (yy:=isqrt(hypothenuses_upto-x**2))-(yy%2 == x%2)) , 0, -2):
            if gcd(x,y) == 1: A008846.add(x**2 + y**2)
    print(A008846:=sorted(A008846)) # Karl-Heinz Hofmann, Sep 30 2024
    
  • Python
    # for single k
    from sympy import factorint
    def A008846_isok(k): return not any([(pf-1) % 4 for pf in factorint(k)]) # Karl-Heinz Hofmann, Oct 01 2024

Formula

x^2 + y^2 where x is even, y is odd and gcd(x, y)=1. Essentially the same as A004613.

Extensions

More terms from T. D. Noe, Sep 30 2002

A046079 Number of Pythagorean triangles with leg n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 4, 3, 1, 2, 1, 4, 4, 1, 1, 7, 2, 1, 3, 4, 1, 4, 1, 4, 4, 1, 4, 7, 1, 1, 4, 7, 1, 4, 1, 4, 7, 1, 1, 10, 2, 2, 4, 4, 1, 3, 4, 7, 4, 1, 1, 13, 1, 1, 7, 5, 4, 4, 1, 4, 4, 4, 1, 12, 1, 1, 7, 4, 4, 4, 1, 10, 4, 1, 1, 13, 4, 1, 4, 7, 1, 7, 4, 4, 4, 1, 4, 13, 1, 2, 7
Offset: 1

Views

Author

Keywords

Comments

Number of ways in which n can be the leg (other than the hypotenuse) of a primitive or nonprimitive right triangle.
Number of ways that 2/n can be written as a sum of exactly two distinct unit fractions. For every solution to 2/n = 1/x + 1/y, x < y, the Pythagorean triple is (n, y-x, x+y-n). - T. D. Noe, Sep 11 2002
For n>2, the positions of the ones in this sequence correspond to the prime numbers and their doubles, A001751. - Ant King, Jan 29 2011
Let L = length of longest leg, H = hypotenuse. For odd n: L =(n^2-1)/2 and H = L+1. For even n, L = (n^2-4)/4 and H = L+2. - Richard R. Forberg, May 31 2013
Or number of ways n^2 can be written as the difference of two positive squares: a(3) = 1: 3^2 = 5^2-4^2; a(8) = 2: 8^2 = 10^2-6^2 = 17^2-15^2; a(16) = 3: 16^2 = 20^2-12^2 = 34^2-30^2 = 65^2-63^2. - Alois P. Heinz, Aug 06 2019
Number of ways to write 2n as the sum of two positive integers r and s such that r < s and (s - r) | (s * r). - Wesley Ivan Hurt, Apr 21 2020

References

  • Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover Publications, 1966, pp. 116-117.

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[0, If[OddQ[n], n, n / 2]^2] - 1) / 2; Table[a[i], {i, 100}] (* Amber Hu (hupo001(AT)gmail.com), Jan 23 2008 *)
    a[ n_] := Length @ FindInstance[ n > 0 && y > 0 && z > 0 && n^2 + y^2 == z^2, {y, z}, Integers, 10^9]; (* Michael Somos, Jul 25 2018 *)
  • PARI
    A046079(n) = ((numdiv(if(n%2, n, n/2)^2)-1)/2); \\ Antti Karttunen, Sep 27 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A046079(n): return prod((e+(p&1)<<1)-1 for p,e in factorint(n).items())>>1 # Chai Wah Wu, Sep 06 2022
  • Sage
    def A046079(n) : return (number_of_divisors(n^2 if n%2==1 else n^2/4) - 1) // 2 # Eric M. Schmidt, Jan 26 2013
    

Formula

For odd n, a(n) = A018892(n) - 1.
Let n = (2^a0)*(p1^a1)*...*(pk^ak). Then a(n) = [(2*a0 - 1)*(2*a1 + 1)*(2*a2 + 1)*(2*a3 + 1)*...*(2*ak + 1) - 1]/2. Note that if there is no a0 term, i.e., if n is odd, then the first term is simply omitted. - Temple Keller (temple.keller(AT)gmail.com), Jan 05 2008
For odd n, a(n) = (tau(n^2) - 1) / 2; for even n, a(n) = (tau((n / 2)^2) - 1) / 2. - Amber Hu (hupo001(AT)gmail.com), Jan 23 2008
a(n) = Sum_{i=1..n-1} (1 - ceiling(i*(2*n-i)/(2*n-2*i)) + floor(i*(2*n-i)/(2*n-2*i))). - Wesley Ivan Hurt, Apr 21 2020
Sum_{k=1..n} a(k) ~ (n / Pi^2) * (log(n)^2 + c_1 * log(n) + c_2), where c_1 = 2 * (gamma - 1) + 48*log(A) - 4*log(Pi) - 13*log(2)/3 = 3.512088... (gamma = A001620, log(A) = A225746), and c_2 = 6 * gamma^2 - (6 + log(2)) * gamma + 2 - Pi^2/2 + 19*log(2)^2/18 + log(2)/3 - 6*gamma_1 + 8 * (zeta'(2)/zeta(2))^2 + (4 - 12*gamma + 2*log(2)/3) * zeta'(2)/zeta(2) - 4*zeta''(2)/zeta(2) = -4.457877... (gamma_1 = -A082633). - Amiram Eldar, Nov 08 2024

A046081 Number of integer-sided right triangles with n as a hypotenuse or leg.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 2, 2, 1, 4, 2, 1, 5, 3, 2, 2, 1, 5, 4, 1, 1, 7, 4, 2, 3, 4, 2, 5, 1, 4, 4, 2, 5, 7, 2, 1, 5, 8, 2, 4, 1, 4, 8, 1, 1, 10, 2, 4, 5, 5, 2, 3, 5, 7, 4, 2, 1, 14, 2, 1, 7, 5, 8, 4, 1, 5, 4, 5, 1, 12, 2, 2, 9, 4, 4, 5, 1, 11, 4, 2, 1, 13, 8, 1, 5, 7, 2, 8, 5, 4, 4, 1, 5, 13, 2, 2, 7
Offset: 1

Views

Author

Keywords

Comments

Pythagorean triples including primitive ones and non-primitive ones. For a certain n, it may be a leg or the hypotenuse in either a primitive Pythagorean triple, or a non-primitive Pythagorean triple, or both. - Rui Lin, Nov 02 2019

Examples

			From _Rui Lin_, Nov 02 2019: (Start)
n=25 is the least number which meets all of following cases:
1. 25 is a leg of a primitive Pythagorean triple (25,312,313), so A024361(25)=1;
2. 25 is the hypotenuse of a primitive Pythagorean triple (7,24,25), so A024362(25)=1;
3. 25 is a leg of a non-primitive Pythagorean triple (25,60,65), so A328708(25)=1;
4. 25 is the hypotenuse of a non-primitive Pythagorean triple (15,20,25), so A328712(25)=1;
5. Combination 1. and 3. means A046079(25)=2;
6. Combination 2. and 4. means A046080(25)=2;
7. Combination 1. and 2. means A024363(25)=2;
8. Combination 3. and 4. means A328949(25)=2;
9. Combination of 1., 2., 3., and 4. means A046081(25)=4. (End)
		

References

  • A. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 116-117, 1966.

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := Module[{f}, f = Select[FactorInteger[n], Mod[#[[1]], 4] == 1&][[All, 2]]; (DivisorSigma[0, If[OddQ[n], n, n/2]^2]-1)/2 + (Times @@ (2*f+1) - 1)/2]; Array[a, 99] (* Jean-François Alcover, Jul 19 2017 *)
  • PARI
    a(n) = {oddn = n/(2^valuation(n, 2)); f = factor(oddn); for (k=1, #f~, if ((f[k,1] % 4) != 1, f[k,2] = 0);); n1 = factorback(f); if (n % 2, (numdiv(n^2)+numdiv(n1^2))/2 -1, (numdiv((n/2)^2)+numdiv(n1^2))/2 -1);} \\ Michel Marcus, Mar 07 2016
    
  • Python
    from sympy import factorint
    def a(n):
        p1, p2 = 1, 1
        for i in factorint(n).items():
            if i[0] % 4 == 1:
                p2 *= i[1] * 2 + 1
            p1 *= i[1] * 2 + 1 - (2 if i[0] == 2 else 0)
        return (p1 + p2)//2 - 1
    print([a(n) for n in range(1, 100)])  # Oleg Sorokin, Mar 02 2023

Formula

a(n) = A046079(n) + A046080(n). - Lekraj Beedassy, Dec 01 2003
From Rui Lin, Nov 02 2019: (Start)
a(n) = A024363(n) + A328949(n).
a(n) = A024361(n) + A024362(n) + A328708(n) + A328712(n). (End)

Extensions

Improved name by Bernard Schott, Jan 03 2019

A024361 Number of primitive Pythagorean triangles with leg n.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 2, 2, 0, 1, 4, 1, 0, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 2, 2, 1, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 4
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A or B takes value n.
For n > 1, a(n) = 0 for n == 2 (mod 4) (n in A016825).
From Jianing Song, Apr 23 2019: (Start)
Note that all the primitive Pythagorean triangles are given by A = min{2*u*v, u^2 - v^2}, B = max{2*u*v, u^2 - v^2}, C = u^2 + v^2, where u, v are coprime positive integers, u > v and u - v is odd. As a result:
(a) if n is odd, then a(n) is the number of representations of n to the form n = u^2 - v^2, where u, v are coprime positive integers (note that this guarantees that u - v is odd) and u > v. Let s = u + v, t = u - v, then n = s*t, where s and t are unitary divisors of n and s > t, so the number of representations is A034444(n)/2 if n > 1 and 0 if n = 1;
(b) if n is divisible by 4, then a(n) is the number of representations of n to the form n = 2*u*v, where u, v are coprime positive integers (note that this also guarantees that u - v is odd because n/2 is even) and u > v. So u and v must be unitary divisors of n/2, so the number of representations is A034444(n/2)/2. Since n is divisible by 4, A034444(n/2) = A034444(n) so a(n) = A034444(n)/2.
(c) if n == 2 (mod 4), then n/2 is odd, so n = 2*u*v implies that u and v are both odd, which is not acceptable, so a(n) = 0.
a(n) = 0 if n = 1 or n == 2 (mod 4), otherwise a(n) is a power of 2.
The earliest occurrence of 2^k is 2*A002110(k+1) for k > 0. (End)

Examples

			a(12) = 2 because 12 appears twice, in (A,B,C) = (5,12,13) and (12,35,37).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1 || Mod[n, 4] == 2, 0, 2^(Length[FactorInteger[n]] - 1)], {n, 100}]
  • PARI
    A024361(n) = if(1==n||(2==(n%4)),0,2^(omega(n)-1)); \\ (after the Mathematica program) - Antti Karttunen, Nov 10 2018

Formula

a(n) = A034444(n)/2 = 2^(A001221(n)-1) if n != 2 (mod 4) and n > 1, a(n) = 0 otherwise. - Jianing Song, Apr 23 2019
a(n) = A024359(n) + A024360(n). - Ray Chandler, Feb 03 2020

Extensions

Incorrect comment removed by Ant King, Jan 28 2011
More terms from Antti Karttunen, Nov 10 2018

A024409 Hypotenuses of more than one primitive Pythagorean triangle.

Original entry on oeis.org

65, 85, 145, 185, 205, 221, 265, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 725, 745, 785, 793, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1325
Offset: 1

Views

Author

Keywords

Comments

The subsequence allowing 4 different shapes is in A159781. [R. J. Mathar, Apr 12 2010]
A024362(a(n)) > 1. - Reinhard Zumkeller, Dec 02 2012

Examples

			65^2 = 16^2 + 63^2 = 33^2 + 56^2 (also = 25^2 + 60^2 = 39^2 + 52^2, but these are not primitive, with gcd = 5 resp. 13). Note that 65 = 1^2 + 8^2 = 4^2 + 7^2 is also the least integer > 1 to be a sum a^2 + b^2 with gcd(a,b) = 1 in two ways. - _M. F. Hasler_, May 18 2023
		

Crossrefs

Cf. A020882, A120960, subsequence of A008846.

Programs

  • Haskell
    import Data.List (findIndices)
    a024409 n = a024409_list !! (n-1)
    a024409_list = map (+ 1) $ findIndices (> 1) a024362_list
    -- Reinhard Zumkeller, Dec 02 2012
  • Mathematica
    f[c_] := f[c] = Block[{a = 1, b, cnt = 0, lmt = Floor[ Sqrt[c^2/2]]}, While[b = Sqrt[c^2 - a^2]; a < lmt, If[IntegerQ@ b && GCD[a, b, c] == 1, cnt++]; a++]; cnt]Select[1 + 4 Range@ 335, f@# > 1 &] (* Robert G. Wilson v, Mar 16 2014 *)
    Select[Tally[Sqrt[Total[#^2]]&/@Union[Sort/@({Times@@#,(Last[#]^2-First[ #]^2)/2}&/@(Select[Subsets[Range[1,71,2],{2}],GCD@@# == 1&]))]],#[[2]]> 1&][[All,1]]//Sort (* Harvey P. Dale, Sep 29 2018 *)

A024363 Number of primitive Pythagorean triangles with side n.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 0, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 4, 2, 0, 2, 1, 4, 0, 1, 2, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 4, 4, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times AUBUC takes value n.
Using Euclidean parameters (x, y) with x > y to generate primitive Pythagorean triples to capture all occurrences of side n, the Mma program below must allow the x parameter to iterate at least (n+1)/2 times. - Frank M Jackson, Jun 12 2017

Crossrefs

Programs

  • Mathematica
    lst={}; xmax=51; Do[If[GCD[x, y]==1&&OddQ[x+y], AppendTo[lst, Sort@{x^2-y^2, 2 x*y, x^2+y^2}]], {x, xmax}, {y, x}]; BinCounts[Select[Flatten@lst, #<2xmax &], {1, 2(xmax-1), 1}] (* or *)
    a[n_] := Block[{x, y, s = List@ ToRules@ Reduce[(x^2-y^2 == n^2 || x^2 + y^2 == n^2) && x>y>0, {x, y}, Integers]}, If[s == {}, 0, Length@ Select[ {x, y} /. s, GCD @@ # == 1 &]]]; Array[a, 99] (* Giovanni Resta, Jun 19 2017 *)

Formula

a(n)=0 for n=1 and n=2 (mod 4)=A016825. a(n)=A024361(n)+A024362(n). - Lekraj Beedassy, Dec 01 2003

A120960 Pythagorean prime powers.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 125, 137, 149, 157, 169, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 289, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593
Offset: 1

Views

Author

Lekraj Beedassy, Jul 19 2006

Keywords

Comments

1 + sum of the indices of the first two numbers in A001844 that are divisible by n, if 1 + the sum of those indices equals n. - Mats Granvik, Oct 16 2007
R. J. Turyn proved [Baliga, et al., p. 129, gives the reference] that Williamson Hadamard matrices exist for 4t = 2(p^k + 1), for all primes p such that p == 1 (mod 4). - L. Edson Jeffery, Apr 10 2012
A024362(a(n)) = 1. - Reinhard Zumkeller, Dec 02 2012

Examples

			A001844(1) = 5 is divisible by 5, A001844(3) = 25 is divisible by = 5 and 1+3+1=5, so 5 is a member.
A001844(2) = 13 is divisible by = 13, A001844(10) = 221 is divisible by = 13 and 2+10+1=13 so 13 is a member.
		

Crossrefs

Cf. Disjoint union of A002144 and A146945.
Cf. A001844, subsequence of A000961.
Cf. A024409, subsequence of A008846.

Programs

  • Excel
    Generate the indices with: =if(mod(1+2*row()*(row()+1);4*column()+1)=0;row();") Then sum the first two indices if it equals the column + 1. - Mats Granvik, Oct 16 2007
    
  • Haskell
    import Data.List (elemIndices)
    a120960 n = a120960_list !! (n-1)
    a120960_list = map (+ 1) $ elemIndices 1 a024362_list
    -- Reinhard Zumkeller, Dec 02 2012

A137409 Numbers that cannot be the value of 'C' in a primitive Pythagorean triple (A < B; A^2 + B^2 = C^2).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Keywords

Comments

Complement of A008846. - R. J. Mathar, Aug 15 2010
A024362(a(n)) = 0. - Reinhard Zumkeller, Dec 02 2012
Except for the 1st term 1, complement of A004613. - Federico Provvedi, Jan 26 2019
After 1, numbers k for which A065338(k) > 1, i.e., after 1, numbers all of whose prime divisors are not of the form 4u+1. - Antti Karttunen, Dec 26 2020

Examples

			3,4,5; number 5 is not in this sequence.
5,12,13; number 13 is not in this sequence.
8,15,17; number 17 is not in this sequence.
7,24,25; number 25 is not in this sequence.
		

Crossrefs

Subsequences: A125667 (the odd terms), A339875.

Programs

  • Haskell
    import Data.List (elemIndices)
    a137409 n = a137409_list !! (n-1)
    a137409_list = map (+ 1) $ elemIndices 0 a024362_list
    -- Reinhard Zumkeller, Dec 02 2012
    
  • Mathematica
    okQ[1] = True;
    okQ[n_] := AnyTrue[FactorInteger[n][[All, 1]], Mod[#, 4] != 1&];
    Select[Range[100], okQ] (* Jean-François Alcover, Mar 10 2019, after Federico Provvedi's comment *)
  • PARI
    A065338(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = (f[i, 1]%4)); factorback(f); };
    isA137409(n) = ((1==n)||(A065338(n)>1)); \\ Antti Karttunen, Dec 26 2020

Extensions

Extended by R. J. Mathar, Aug 15 2010

A157228 Number of primitive inequivalent inclined square sublattices of square lattice of index n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Comments

From Andrey Zabolotskiy, May 09 2018: (Start)
Also, the number of partitions of n into 2 distinct coprime squares.
All such sublattices (including non-primitive ones) are counted in A025441.
The primitive sublattices that have the same symmetries (including the orientation of the mirrors) as the parent lattice are not counted here; they are counted in A019590, and all such sublattices (including non-primitive ones) are counted in A053866.
For n > 2, equals A193138. (End)

Crossrefs

Cf. A193138, A145393 (all sublattices of the square lattice), A025441, A019590, A053866, A157226, A157230, A157231, A000089, A304182, A224450, A224770, A281877, A024362.

Formula

a(n) = (A000089(n) - A019590(n)) / 2. - Andrey Zabolotskiy, May 09 2018
a(n) = 1 if n>2 is in A224450, a(n) = 2 if n is in A224770, a(n) is a higher power of 2 if n is in A281877 (first time reaches 8 at n = 32045). - Andrey Zabolotskiy, Sep 30 2018
a(n) = b(n) for odd n, a(n) = b(n/2) for even n, where b(n) = A024362(n). - Andrey Zabolotskiy, Jan 23 2022

Extensions

New name and more terms from Andrey Zabolotskiy, May 09 2018
Showing 1-10 of 19 results. Next