cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024381 a(n) = sum of squares of first n positive integers congruent to 1 mod 4.

Original entry on oeis.org

1, 26, 107, 276, 565, 1006, 1631, 2472, 3561, 4930, 6611, 8636, 11037, 13846, 17095, 20816, 25041, 29802, 35131, 41060, 47621, 54846, 62767, 71416, 80825, 91026, 102051, 113932, 126701, 140390, 155031, 170656, 187297, 204986, 223755, 243636, 264661
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    I:=[1, 26, 107, 276]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 19 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,26,107,276},40] (* Vincenzo Librandi, Jun 19 2012 *)
    Accumulate[Range[1,151,4]^2] (* Harvey P. Dale, Apr 25 2020 *)

Formula

1^2 + 5^2 + 9^2 + ... + (4n+1)^2 = (4n+1)(n+1)+(4^2)(2n+1)(n+1)n/6, which generalizes to (0a+1)^2 + (1a+1)^2 + (2a+1)^2 + ... + (na+1)^2 = (an+1)(n+1) + (a^2)(2n+1)(n+1)n/6. Also Sum{n}(an+1)^2 = (an+1)(n+1) + (a^2)* sum{n}(n+1)^2. - Helmut Rasinger (helmut.rasinger(AT)wanadoo.fr), Sep 04 2003
G.f.: x*(1 + 22*x + 9*x^2) / (x-1)^4. - R. J. Mathar, Oct 08 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 19 2012