cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024403 [ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.

Original entry on oeis.org

1, 3, 5, 9, 13, 18, 24, 30, 37, 45, 54, 64, 74, 85, 97, 109, 122, 136, 151, 167, 183, 200, 218, 236, 255, 275, 296, 318, 340, 363, 387, 411, 436, 462, 489, 517, 545, 574, 604, 634, 665, 697, 730, 764, 798, 833, 869, 905, 942, 980, 1019, 1059, 1099, 1140, 1182, 1224
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(n*(405*n^4+4590*n^3+18495*n^2+30534*n+16376))  div (40*(3*n+10)*(9*(n+1)^2+33*n+55)): n in [1..60]]; // Vincenzo Librandi, Jul 07 2019
  • Mathematica
    Table[Floor[(n (405 n^4 + 4590 n^3 + 18495 n^2 + 30534 n + 16376)) / (40 (3 n + 10) (9 (n+1)^2 + 33 n + 55))], {n, 1, 100}] (* Vincenzo Librandi, Jul 07 2019 *)

Formula

Empirical g.f.: x*(x^2-x+1)*(x^8-x^7-x^5+x^4-x^3-x-1) / ((x-1)^3*(x^2+1)*(x^4+1)). - Colin Barker, Aug 16 2014
a(n) = floor(A024393(n) / A024392(n + 1)). - Sean A. Irvine, Jul 07 2019

A024400 [ (4th elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.

Original entry on oeis.org

33, 304, 1418, 4726, 12760, 29771, 62375, 120293, 217192, 371635, 608125, 958252, 1461943, 2168809, 3139601, 4447759, 6181066, 8443406, 11356615, 15062445, 19724615, 25530979, 32695782, 41462024, 52103923, 64929482, 80283154, 98548608
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = floor(A024393(n) / A005449(n + 3)). - Sean A. Irvine, Jul 06 2019

A024402 [ (4th elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.

Original entry on oeis.org

3, 20, 63, 150, 304, 552, 926, 1460, 2197, 3180, 4460, 6090, 8128, 10639, 13689, 17350, 21699, 26817, 32790, 39706, 47662, 56755, 67090, 78774, 91919, 106644, 123069, 141320, 161528, 183828, 208360, 235266, 264697, 296804, 331746, 369683, 410784
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    S[n_] := 3 Range[0, n + 2] + 2; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[2, S@ n]], {n, 37}] (* Michael De Vlieger, Dec 10 2015 *)

Formula

a(n) = floor(A024393(n) / A024391(n + 2)). - Sean A. Irvine, Jul 07 2019
Showing 1-3 of 3 results.