cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024409 Hypotenuses of more than one primitive Pythagorean triangle.

Original entry on oeis.org

65, 85, 145, 185, 205, 221, 265, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 725, 745, 785, 793, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1325
Offset: 1

Views

Author

Keywords

Comments

The subsequence allowing 4 different shapes is in A159781. [R. J. Mathar, Apr 12 2010]
A024362(a(n)) > 1. - Reinhard Zumkeller, Dec 02 2012

Examples

			65^2 = 16^2 + 63^2 = 33^2 + 56^2 (also = 25^2 + 60^2 = 39^2 + 52^2, but these are not primitive, with gcd = 5 resp. 13). Note that 65 = 1^2 + 8^2 = 4^2 + 7^2 is also the least integer > 1 to be a sum a^2 + b^2 with gcd(a,b) = 1 in two ways. - _M. F. Hasler_, May 18 2023
		

Crossrefs

Cf. A020882, A120960, subsequence of A008846.

Programs

  • Haskell
    import Data.List (findIndices)
    a024409 n = a024409_list !! (n-1)
    a024409_list = map (+ 1) $ findIndices (> 1) a024362_list
    -- Reinhard Zumkeller, Dec 02 2012
  • Mathematica
    f[c_] := f[c] = Block[{a = 1, b, cnt = 0, lmt = Floor[ Sqrt[c^2/2]]}, While[b = Sqrt[c^2 - a^2]; a < lmt, If[IntegerQ@ b && GCD[a, b, c] == 1, cnt++]; a++]; cnt]Select[1 + 4 Range@ 335, f@# > 1 &] (* Robert G. Wilson v, Mar 16 2014 *)
    Select[Tally[Sqrt[Total[#^2]]&/@Union[Sort/@({Times@@#,(Last[#]^2-First[ #]^2)/2}&/@(Select[Subsets[Range[1,71,2],{2}],GCD@@# == 1&]))]],#[[2]]> 1&][[All,1]]//Sort (* Harvey P. Dale, Sep 29 2018 *)