A024410 Long leg of more than one primitive Pythagorean triangle.
420, 572, 780, 840, 924, 1020, 1292, 1596, 1680, 1716, 1848, 1932, 2100, 2145, 2244, 2300, 2484, 2520, 2640, 2652, 2700, 2900, 2964, 3080, 3132, 3315, 3348, 3432, 3465, 3596, 3640, 3828, 3876, 3960, 4060, 4092, 4095, 4340, 4488, 4588, 4620, 4680, 4692
Offset: 1
Keywords
Examples
From _Bernard Schott_, Oct 21 2021: (Start) -> For primitive Pythagorean triples: a(1) = 420 because 420 is the smallest long leg that belongs to more than one primitive Pythagorean triples, we have 29^2 + 420^2 = 421^2 and 341^2 + 420^2 = 541^2. -> For primitive triples with 2/a = 1/b + 1/c: a(1) = 420 because 420 is the smallest middle side a that belongs to more than one primitive integer-sided triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c, we have 2/420 = 1/310 + 1/651 and 2/420 = 1/406 + 1/435. (End)
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Ron Knott, Pythagorean Triples and Online Calculators
Crossrefs
Cf. A020883.
Programs
-
Mathematica
bb=1;s=e="";For[b=1,b<=12^3,For[a=b-1,a>2,c=(a^2+b^2)^0.5;If[c==Round[c]&&GCD[a,b]==1,If[b==bb,e=e<>ToString[b]<>",";s=s<>ToString[a]<>","<>ToString[b]<>","<>ToString[Round[c]]<>"; "];bb=b];a-- ];b++ ];Print["B = ",e] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *) Select[Tally[Union[Sort/@({Times@@#,(Last[#]^2-First[#]^2)/2}&/@(Select[ Subsets[Range[1,121,2],{2}],GCD@@#==1&]))][[All,2]]],#[[2]]>1&][[All,1]] //Sort (* Harvey P. Dale, Mar 07 2020 *)
Comments