cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024429 Expansion of e.g.f. sinh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, 2, 7, 27, 106, 443, 2045, 10440, 57781, 340375, 2115664, 13847485, 95394573, 690495874, 5235101739, 41428115543, 341177640610, 2917641580783, 25866987547865, 237421321934176, 2252995117706961, 22073206655954547, 222971522853648704, 2319379362420267753
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of an n-element set into an odd number of classes. - Peter Luschny, Apr 25 2011
Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k); entry gives B sequence (cf. A024430).

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 27*x^5 + 106*x^6 + 443*x^7 + 2045*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 4th line of table.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Stirling2(n,2*k+1)) ); # G. C. Greubel, Oct 09 2019
  • Magma
    a:= func< n | (&+[StirlingSecond(n,2*k+1): k in [0..Floor(n/2)]]) >;
    [a(n): n in [0..25]]; // G. C. Greubel, Oct 09 2019
    
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(
           b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 15 2018
    with(combinat); seq((bell(n) - BellB(n, -1))/2, n = 0..25); # G. C. Greubel, Oct 09 2019
  • Mathematica
    CoefficientList[Series[Sinh[E^x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    Table[(BellB[n] - BellB[n, -1])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(sinh(exp(x)-1)))) \\ G. C. Greubel, Nov 12 2017
    
  • Sage
    def A024429(n) :
        return add(stirling_number2(n,i) for i in range(1,n+n%2,2))
    # Peter Luschny, Feb 28 2012
    

Formula

S(n,1) + S(n,3) + ... + S(n,2k+1), where k = [ (n-1)/2 ] and S(i,j) are Stirling numbers of second kind.
E.g.f.: sinh(exp(x)-1). - N. J. A. Sloane, Jan 28 2001
a(n) = (A000110(n) - A000587(n)) / 2. - Peter Luschny, Apr 25 2011
G.f.: x*G(0) where G(k) = 1 - x*(2*k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - (2*k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: x*G(0)/(1+x) where G(k) = 1 - 2*x*(k+1)/((2*x*k+x-1) - x*(2*x*k+x-1)/(x - 2*(k+1)*(2*x*k+2*x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: -x*(1+x)*Sum_{k>=0} x^(2*k)/((2*x*k+x-1)*Product_{p=0..k} (2*x*p-1)*(2*x*p-x-1)). - Sergei N. Gladkovskii, Jan 06 2013
G.f.: Sum_{k>=0} x^(2*k+1)/(Product_{i=0..2*k+1} 1-i*x). - Sergei N. Gladkovskii, Jan 06 2013
a(n) ~ n^n / (2 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Aug 04 2014

Extensions

Description changed by N. J. A. Sloane, Sep 05 2006