cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A361027 Table of generalized de Bruijn's numbers (A006480) read by ascending antidiagonals.

Original entry on oeis.org

2, 30, 3, 560, 20, 20, 11550, 210, 75, 210, 252252, 2772, 504, 504, 2772, 5717712, 42042, 4620, 2352, 4620, 42042, 133024320, 700128, 51480, 15840, 15840, 51480, 700128, 3155170590, 12471030, 656370, 135135, 81675, 135135, 656370, 12471030, 75957810500, 233716340, 9237800
Offset: 0

Views

Author

Peter Bala, Feb 28 2023

Keywords

Comments

The Catalan numbers A000108 are given by the formula Catalan(n) = (2*n)!/(n!*(n + 1)!). Gessel (1992) considered generalized Catalan numbers defined by Catalan(r,n) = J(r) * (2*n)!/(n!*(n + r + 1)!), where J(r) = (2*r + 2)!/(2*(r + 1)!) = (2^r)*Product_{j = 0..r} (2*j + 1) is chosen so that these numbers are always integers. Gessel's generalized Catalan numbers are particular cases of super ballot numbers. See A135573 for a table of these generalized Catalan numbers.
For this table we carry out an analogous construction using the de Bruijn numbers B(n) = (3*n)!/n!^3 = A006480(n) in place of the central binomial numbers. We define the generalized de Bruijn number B(r,n), r = 0, 1, 2, ..., by B(r,n) = F(r) * (3*n)!/(n!*(n + r + 1)!^2), where choosing F(r) = (3*r + 3)!/(3*(r + 1)!) = (3^r)*Product_{j = 0..r} (3*j + 1)*(3*j + 2) appears to produce integer values for these quantities. We have verified this for rows 0, 1, 2 and 3 of the table.
An alternative expression for the generalized de Bruijn numbers is B(r,n) = G(r,n) * B(n+r+1), where G(r) = (1/3)*Product_{j = 0..r} ( (3*j + 1)*(3*j + 2)/((3*n + 3*j + 1)*(3*n + 3*j + 2)) ).
The rows of the square array below are the sequences of generalized de Bruijn numbers {B(0,k)}, {B(1,k)}, {B(2,k)}, ....

Examples

			The square array with rows n >= 0 and columns k >= 0 begins:
  n\k|       0       1       2        3        4         5         6 ...
  ----------------------------------------------------------------------
   0 |       2       3      20      210     2772     42042    700128 ...
   1 |      30      20      75      504     4620     51480    656370 ...
   2 |     560     210     504     2352    15840    135135   1361360 ...
   3 |   11550    2772    4620    15840    81675    550550   4492488 ...
   4 |  252252   42042   51480   135135   550550   3006003  20271888 ...
   5 | 5717712  700128  656370  1361360  4492488  20271888  ...
  ...
As a triangle:
 Row
  0 |        2
  1 |       30       3
  2 |      560      20     20
  3 |    11550     210     75    210
  4 |   252252    2772    504    504   2772
  5 |  5717712   42042   4620   2352   4620   42042
  ...
		

References

  • N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.

Crossrefs

A208881 (column 1), A361028(row 0), A361029(row 1), A361030(row 2), A361031(row 3).

Programs

  • Maple
    # as a square array
    T := proc (n,k) (1/3)*27^(n+k+1)*binomial(n+1/3, n+k+1)*binomial(n+2/3,
    n+k+1); end proc:
    for n from 0 to 10 do seq(T(n,k), k = 0..10); end do;
    # as a triangle
    T := proc (n,k) (1/3)*27^(n+k+1)*binomial(n+1/3, n+k+1)*binomial(n+2/3,
    n+k+1); end proc:
    for n from 0 to 10 do seq(T(n-k,k), k = 0..n); end do;

Formula

T(n,k) = (3*n + 3)!/(3*(n + 1)!) * (3*k)!/(k!*(k + n + 1)!^2), n, k >= 0.
T(n,k) = (1/3)*27^(n+1+k)*binomial(n+1/3, n+1+k)*binomial(n+2/3, n+1+k).
T(n,k) = (1/(2*Pi))^2 * 1/27^(n+k+1) * Integral_{x = 0..27} (27 - x)^(n+2/3)*x^(k-2/3) dx * Integral_{x = 0..27} (27 - x)^(n+1/3)*x^(k-1/3) dx.
P-recursive: (n + k + 1)^2*T(n,k) = 3*(3*k - 1)*(3*k - 2)*T(n,k-1) with T(n,0) = 1/(n+1)!^2 * (3*n + 3)!/(3*(n + 1)!).
(n + k + 1)^2*T(n,k) = 3*(3*n + 1)*(3*n + 2)*T(n-1,k) with T(0,k) = 2*(k + 1)*(3*k)!/(k + 1)!^3.
T(n,0) = A208881(n+1).
Showing 1-1 of 1 results.