A361030
a(n) = 20160*(3*n)!/(n!*(n+3)!^2).
Original entry on oeis.org
560, 210, 504, 2352, 15840, 135135, 1361360, 15519504, 194699232, 2636552100, 38003792400, 577037174400, 9155656500480, 150853746558690, 2568167588473200, 44990491457326800, 808333317429976800, 14853124707775823700, 278470827854627007600, 5316261259042879236000
Offset: 0
A361028
a(n) = 2*(3*n)!/(n!*(n+1)!^2).
Original entry on oeis.org
2, 3, 20, 210, 2772, 42042, 700128, 12471030, 233716340, 4557468630, 91752013080, 1896208270320, 40055997189600, 862021408906800, 18849534808095360, 417929529573239310, 9379553386892837940, 212776905535994934750, 4873239487455972633000, 112571832160232967822300
Offset: 0
A361029
a(n) = 120*(3*n)!/(n!*(n+2)!^2).
Original entry on oeis.org
30, 20, 75, 504, 4620, 51480, 656370, 9237800, 140229804, 2259901800, 38230005450, 673210036800, 12262039956000, 229872375708480, 4417859720647350, 86767376381987400, 1736954330906081100, 35364582637561485000, 730985923118395894950, 15315895532004485418000
Offset: 0
-
a := proc(n) option remember; if n = 0 then 30 else 3*(3*n-1)*(3*n-2)/(n+2)^2*a(n-1) end if; end proc:
seq(a(n), n = 0..20);
-
Table[120 (3n)!/(n!(n+2)!^2),{n,0,20}] (* Harvey P. Dale, Jul 02 2023 *)
A361031
a(n) = (3^3)*(1*2*4*5*7*8*10*11)*(3*n)!/(n!*(n+4)!^2).
Original entry on oeis.org
11550, 2772, 4620, 15840, 81675, 550550, 4492488, 42325920, 446185740, 5148297000, 63985977000, 846321189120, 11802213457650, 172255143129300, 2615726247519000, 41127042052404000, 666874986879730860, 11114583114662181000, 189866473537245687000, 3316382259894423720000
Offset: 0
A361032
Square array read by ascending antidiagonals: T(n,k) = F(n) * (4*k)!/(k!*(k + n + 1)!^3), where F(n) = (1/8)*(4*n + 4)!/(n + 1)!; n, k >= 0.
Original entry on oeis.org
3, 315, 9, 46200, 280, 280, 7882875, 17325, 3675, 17325, 1466593128, 1513512, 116424, 116424, 1513512, 288592936632, 162954792, 5885880, 2134440, 5885880, 162954792, 59064793444800, 20193091776, 399072960, 67953600, 67953600, 399072960, 20193091776, 12445136556298875
Offset: 0
The square array with rows n >= 0 and columns k >= 0 begins:
n\k| 0 1 2 3 4 ...
----------------------------------------------------------------------
0 | 3 9 280 17325 1513512 ...
1 | 315 280 3675 116424 5885880 ...
2 | 46200 17325 116424 2134440 67953600 ...
3 | 7882875 1513512 5885880 67953600 1449322875 ...
4 | 1466593128 162954792 399072960 3086579925 46235189000 ...
5 | ...
...
As a triangle:
Row
0 | 3
1 | 315 9
2 | 46200 280 280
3 | 7882875 17325 3675 17325
4 | 1466593128 1513512 116424 116424 1513512
5 | 288592936632 162954792 5885880 2134440 5885880 162954792
-
# as a square array
T := proc (n, k) (-1)^k*(1/8)*256^(n+1+k)*binomial(n+1/4, n+1+k)*binomial(n+2/4, n+1+k)* binomial(n+3/4, n+1+k); end proc:
for n from 0 to 10 do seq(T(n, k), k = 0..10); end do;
# as a triangle
T := proc (n, k) (-1)^k*(1/8)*256^(n+1+k)*binomial(n+1/4, n+1+k)*binomial(n+2/4, n+1+k)* binomial(n+3/4, n+1+k); end proc:
for n from 0 to 10 do seq(T(n-k, k), k = 0..n); end do;
-
T(n,k) = (-1)^k*(1/8)*256^(n+k+1)*binomial(n+1/4, n+k+1)*binomial(n+1/2, n+k+1)* binomial(n+3/4, n+k+1) \\ Andrew Howroyd, Jan 05 2024
Showing 1-5 of 5 results.
Comments