A361030
a(n) = 20160*(3*n)!/(n!*(n+3)!^2).
Original entry on oeis.org
560, 210, 504, 2352, 15840, 135135, 1361360, 15519504, 194699232, 2636552100, 38003792400, 577037174400, 9155656500480, 150853746558690, 2568167588473200, 44990491457326800, 808333317429976800, 14853124707775823700, 278470827854627007600, 5316261259042879236000
Offset: 0
A361027
Table of generalized de Bruijn's numbers (A006480) read by ascending antidiagonals.
Original entry on oeis.org
2, 30, 3, 560, 20, 20, 11550, 210, 75, 210, 252252, 2772, 504, 504, 2772, 5717712, 42042, 4620, 2352, 4620, 42042, 133024320, 700128, 51480, 15840, 15840, 51480, 700128, 3155170590, 12471030, 656370, 135135, 81675, 135135, 656370, 12471030, 75957810500, 233716340, 9237800
Offset: 0
The square array with rows n >= 0 and columns k >= 0 begins:
n\k| 0 1 2 3 4 5 6 ...
----------------------------------------------------------------------
0 | 2 3 20 210 2772 42042 700128 ...
1 | 30 20 75 504 4620 51480 656370 ...
2 | 560 210 504 2352 15840 135135 1361360 ...
3 | 11550 2772 4620 15840 81675 550550 4492488 ...
4 | 252252 42042 51480 135135 550550 3006003 20271888 ...
5 | 5717712 700128 656370 1361360 4492488 20271888 ...
...
As a triangle:
Row
0 | 2
1 | 30 3
2 | 560 20 20
3 | 11550 210 75 210
4 | 252252 2772 504 504 2772
5 | 5717712 42042 4620 2352 4620 42042
...
- N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.
-
# as a square array
T := proc (n,k) (1/3)*27^(n+k+1)*binomial(n+1/3, n+k+1)*binomial(n+2/3,
n+k+1); end proc:
for n from 0 to 10 do seq(T(n,k), k = 0..10); end do;
# as a triangle
T := proc (n,k) (1/3)*27^(n+k+1)*binomial(n+1/3, n+k+1)*binomial(n+2/3,
n+k+1); end proc:
for n from 0 to 10 do seq(T(n-k,k), k = 0..n); end do;
A361029
a(n) = 120*(3*n)!/(n!*(n+2)!^2).
Original entry on oeis.org
30, 20, 75, 504, 4620, 51480, 656370, 9237800, 140229804, 2259901800, 38230005450, 673210036800, 12262039956000, 229872375708480, 4417859720647350, 86767376381987400, 1736954330906081100, 35364582637561485000, 730985923118395894950, 15315895532004485418000
Offset: 0
-
a := proc(n) option remember; if n = 0 then 30 else 3*(3*n-1)*(3*n-2)/(n+2)^2*a(n-1) end if; end proc:
seq(a(n), n = 0..20);
-
Table[120 (3n)!/(n!(n+2)!^2),{n,0,20}] (* Harvey P. Dale, Jul 02 2023 *)
A361031
a(n) = (3^3)*(1*2*4*5*7*8*10*11)*(3*n)!/(n!*(n+4)!^2).
Original entry on oeis.org
11550, 2772, 4620, 15840, 81675, 550550, 4492488, 42325920, 446185740, 5148297000, 63985977000, 846321189120, 11802213457650, 172255143129300, 2615726247519000, 41127042052404000, 666874986879730860, 11114583114662181000, 189866473537245687000, 3316382259894423720000
Offset: 0
A361033
a(n) = 3*(4*n)!/(n!*(n+1)!^3).
Original entry on oeis.org
3, 9, 280, 17325, 1513512, 162954792, 20193091776, 2768662192725, 409716429837000, 64358256798795960, 10605621798062141760, 1817833036248401270280, 321997225483126007438400, 58649494641569379926280000, 10941649720331183519046796800, 2084191938036600263793119045925
Offset: 0
-
seq(3*(4*n)!/(n!*(n+1)!^3), n = 0..20);
-
Table[3 (4n)!/(n! ((n+1)!)^3),{n,0,15}] (* Harvey P. Dale, Jul 30 2024 *)
Showing 1-5 of 5 results.
Comments