A361027 Table of generalized de Bruijn's numbers (A006480) read by ascending antidiagonals.
2, 30, 3, 560, 20, 20, 11550, 210, 75, 210, 252252, 2772, 504, 504, 2772, 5717712, 42042, 4620, 2352, 4620, 42042, 133024320, 700128, 51480, 15840, 15840, 51480, 700128, 3155170590, 12471030, 656370, 135135, 81675, 135135, 656370, 12471030, 75957810500, 233716340, 9237800
Offset: 0
Examples
The square array with rows n >= 0 and columns k >= 0 begins: n\k| 0 1 2 3 4 5 6 ... ---------------------------------------------------------------------- 0 | 2 3 20 210 2772 42042 700128 ... 1 | 30 20 75 504 4620 51480 656370 ... 2 | 560 210 504 2352 15840 135135 1361360 ... 3 | 11550 2772 4620 15840 81675 550550 4492488 ... 4 | 252252 42042 51480 135135 550550 3006003 20271888 ... 5 | 5717712 700128 656370 1361360 4492488 20271888 ... ... As a triangle: Row 0 | 2 1 | 30 3 2 | 560 20 20 3 | 11550 210 75 210 4 | 252252 2772 504 504 2772 5 | 5717712 42042 4620 2352 4620 42042 ...
References
- N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.
Links
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194.
Crossrefs
Programs
-
Maple
# as a square array T := proc (n,k) (1/3)*27^(n+k+1)*binomial(n+1/3, n+k+1)*binomial(n+2/3, n+k+1); end proc: for n from 0 to 10 do seq(T(n,k), k = 0..10); end do; # as a triangle T := proc (n,k) (1/3)*27^(n+k+1)*binomial(n+1/3, n+k+1)*binomial(n+2/3, n+k+1); end proc: for n from 0 to 10 do seq(T(n-k,k), k = 0..n); end do;
Formula
T(n,k) = (3*n + 3)!/(3*(n + 1)!) * (3*k)!/(k!*(k + n + 1)!^2), n, k >= 0.
T(n,k) = (1/3)*27^(n+1+k)*binomial(n+1/3, n+1+k)*binomial(n+2/3, n+1+k).
T(n,k) = (1/(2*Pi))^2 * 1/27^(n+k+1) * Integral_{x = 0..27} (27 - x)^(n+2/3)*x^(k-2/3) dx * Integral_{x = 0..27} (27 - x)^(n+1/3)*x^(k-1/3) dx.
P-recursive: (n + k + 1)^2*T(n,k) = 3*(3*k - 1)*(3*k - 2)*T(n,k-1) with T(n,0) = 1/(n+1)!^2 * (3*n + 3)!/(3*(n + 1)!).
(n + k + 1)^2*T(n,k) = 3*(3*n + 1)*(3*n + 2)*T(n-1,k) with T(0,k) = 2*(k + 1)*(3*k)!/(k + 1)!^3.
T(n,0) = A208881(n+1).
Comments