A024525 a(n) = 1^2 + prime(1)^2 + prime(2)^2 + ... + prime(n)^2.
1, 5, 14, 39, 88, 209, 378, 667, 1028, 1557, 2398, 3359, 4728, 6409, 8258, 10467, 13276, 16757, 20478, 24967, 30008, 35337, 41578, 48467, 56388, 65797, 75998, 86607, 98056, 109937, 122706, 138835, 155996, 174765, 194086, 216287, 239088, 263737, 290306, 318195, 348124
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Programs
-
Magma
[1] cat [n le 1 select 5 else Self(n-1) + NthPrime(n)^2: n in [1..80]]; // G. C. Greubel, Jan 30 2025
-
Mathematica
Join[{1},Accumulate[Prime[Range[40]]^2]+1] (* Harvey P. Dale, Oct 24 2015 *)
-
Python
def A024525(n): if n<2: return (1,5)[n] else: return A024525(n-1) + nth_prime(n)**2 print([A024525(n) for n in range(81)]) # G. C. Greubel, Jan 30 2025
Formula
a(n) = 1 + A024450(n), for n >= 1.
a(n) = a(n-1) + prime(n)^2, with a(0) = 1, a(1) = 5. - G. C. Greubel, Jan 30 2025
Extensions
Corrected by Harvey P. Dale, Oct 24 2015