A024528 a(n) = n-th elementary symmetric function of {1, prime(1), prime(2), ..., prime(n)}.
1, 3, 11, 61, 457, 5237, 70391, 1226677, 23817373, 557499269, 16390571671, 514577415031, 19239924846277, 796257656832167, 34543329507310391, 1636619248175258407, 87355709935877186981, 5186576044693944076609
Offset: 0
Keywords
Examples
a(0) = 1 a(1) = 1*2 + A002110(0) = 2 + 1 = 3 a(2) = 3*3 + A002110(1) = 9 + 2 = 11 a(3) = 11*5 + A002110(2) = 55 + 6 = 61 a(4) = 61*7 + A002110(3) = 427 + 30 = 457 a(5) = 457*11 + A002110(4) = 5027 + 210 = 5237 a(6) = 5237*13 + A002110(5) = 68081 + 2310 = 70391 a(7) = 70391*17 + A002110(6) = 1196647 + 30030 = 1226677 - _Philippe Deléham_, Jun 03 2015
Links
- Clark Kimberling, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Harmonic Series of Primes
Programs
-
Maple
N:= 30: # to get a(0) to a(N) Primes:= [seq(ithprime(i),i=1..N)]: seq(mul(Primes[i],i=1..n)*(1+add(1/Primes[i],i=1..n)),n=0..N); # Robert Israel, Jun 03 2015
-
Mathematica
Table[ Det[ DiagonalMatrix[ Table[ Prime[i], {i, 1, n} ] ] + 1 ], {n, 1, 20} ] (* Alexander Adamchuk, Jun 02 2006 *) p[0] = 1; p[n_] := Prime[n]; t[n_] := Table[p[k], {k, 0, n}] a[n_] := SymmetricPolynomial[n, t[n]] Table[a[n], {n, 0, 20}] (* Clark Kimberling, Aug 18 2012 *)
Formula
This sequence is the numerators of the prime harmonic numbers + 1, i.e. a(n)/A002110(n) = Sum_{i=0...n} 1/p(i) where p(0) = 1, p(i) is the i-th prime for n > 0 and A002110 are the primorial numbers. - Gerald McGarvey, Sep 03 2004
a(n) = Det[ DiagonalMatrix[ Table[ Prime[i], {i, 1, n} ] ] + 1 ]. - Alexander Adamchuk, Jun 02 2006
Extensions
More terms from T. D. Noe, Sep 09 2004
Comments