cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024595 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (F(2), F(3), ...), t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 2, 3, 5, 0, 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1598, 2586, 4184, 6770, 10954, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28658, 46370, 75028, 121398, 196426
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Fibonacci(k+1)*A023533(n-k+1): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 14 2022
    
  • Mathematica
    A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
    A024595[n_]:= A024595[n]= Sum[Fibonacci[k+1]*A023533[n+1-k], {k, Floor[(n+1)/2]}];
    Table[A024595[n], {n,100}] (* G. C. Greubel, Jul 14 2022 *)
  • SageMath
    def A023533(n):
        if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0
        else: return 1
    [sum(fibonacci(k+1)*A023533(n-k+1) for k in (1..((n+1)//2))) for n in (1..100)] # G. C. Greubel, Jul 14 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} Fibonacci(k+1)*A023533(n-k+1).