cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025109 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = (F(2), F(3), F(4), ...), t = A023533.

Original entry on oeis.org

0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1598, 2586, 4184, 6770, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28658, 46370, 75028, 121398, 196426, 317824, 514250
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Fibonacci(k+1)*A023533(n-k+1): k in [1..Floor(n/2)]]): n in [2..100]]; // G. C. Greubel, Jul 14 2022
    
  • Mathematica
    A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] + 2, 3] != n, 0, 1];
    A025109[n_]:= A025109[n]= Sum[Fibonacci[k+1]*A023533[n+1-k], {k, Floor[n/2]}];
    Table[A025109[n], {n, 2, 100}] (* G. C. Greubel, Jul 14 2022 *)
  • SageMath
    def A023533(n):
        if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0
        else: return 1
    [sum(fibonacci(k+1)*A023533(n-k+1) for k in (1..(n//2))) for n in (2..100)] # G. C. Greubel, Jul 14 2022

Formula

a(n) = Sum_{k=1..floor(n/2)} Fibonacci(k+1)*A023533(n-k+1).

Extensions

a(36) corrected by Sean A. Irvine, Aug 07 2019
Offset corrected by G. C. Greubel, Jul 14 2022

A202278 Right-truncatable Fibonacci numbers: every prefix is Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2011

Keywords

Comments

This sequence is finite with 11 terms.
n such that both n and floor(n/10) are Fibonacci numbers. - Eric M. Schmidt, Feb 18 2013
First 11 terms of A096275, A132634, A132636. Also 11 consecutive terms in A024595, A025109. - Omar E. Pol, Feb 19 2013

Crossrefs

Cf. A000045 (Fibonacci numbers).
Showing 1-2 of 2 results.