cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143218 Triangle read by rows, A127775 * A000012 * A127775; 1<=k<=n.

Original entry on oeis.org

1, 3, 9, 5, 15, 25, 7, 21, 35, 49, 9, 27, 45, 63, 81, 11, 33, 55, 77, 99, 121, 13, 39, 65, 91, 117, 143, 169, 15, 45, 75, 105, 135, 165, 195, 225, 17, 51, 85, 119, 153, 187, 221, 255, 289, 19, 57, 95, 133, 171, 209, 247, 285, 323, 361, 21, 63, 105, 147, 189, 231, 273, 315, 357, 399, 441
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Examples

			First few rows of the triangle =
   1;
   3,  9;
   5, 15, 25;
   7, 21, 35, 49;
   9, 27, 45, 63,  81;
  11, 33, 55, 77,  99, 121;
  13, 39, 65, 91, 117, 143, 169;
  ...
T(5,3) = 45 = 9*5 = (2*5 - 1) * (2*3 - 1).
		

Crossrefs

Programs

  • Magma
    [(2*n-1)*(2*k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 12 2022
    
  • Mathematica
    Table[(2*k-1)*(2*n-1), {n,12}, {k,n}]//Flatten (* G. C. Greubel, Jul 12 2022 *)
  • SageMath
    flatten([[(2*n-1)*(2*k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 12 2022

Formula

Triangle read by rows, A127775 * A000012 * A127775.
T(n, k) = (2*n - 1) * (2*k - 1), 1<=k<=n.
Sum_{k=1..n} T(n, k) = A015237(n) = n^2 * (2*n-1).
From G. C. Greubel, Jul 12 2022: (Start)
T(n, k) = A131507(n,k) * A127775(n,k).
T(n, n) = A016754(n-1) = (2*n-1)^2, n >= 1.
T(2*n-1, n) = A014634(n-1), n >= 1.
T(2*n-2, n-1) = A033567(n-1), n >= 2.
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A024598(n), n >= 1. (End)

A264798 Irregular triangle read by rows: odd-valued terms of A094728(n+1).

Original entry on oeis.org

1, 3, 9, 5, 15, 7, 25, 21, 9, 35, 27, 11, 49, 45, 33, 13, 63, 55, 39, 15, 81, 77, 65, 45, 17, 99, 91, 75, 51, 19, 121, 117, 105, 85, 57, 21, 143, 135, 119, 95, 63, 23, 169, 165, 153, 133, 105, 69, 25, 195, 187, 171, 147, 115, 75, 27, 225, 221, 209, 189, 161, 125, 81, 29, 255, 247
Offset: 0

Views

Author

Paul Curtz, Nov 25 2015

Keywords

Comments

A094728(n+1) comes from A120070(n+2). a(n) approximates frequencies of the spectral lines of the hydrogen atom.
Row sums: 1, 3, 14, 22, ... = A024598(n+1).
First column: A085046(n+1).
Row sums of A261046(n) = 1, 3, 8, 12, ... = A014255(n). See the formula.

Examples

			Irregular triangle begins:
1,
3,
9,  5,
15, 7,
25, 21,  9,
35, 27, 11,
49, 45, 33, 13,
63, 55, 39, 15,
...
		

Crossrefs

Programs

  • Mathematica
    Table[n^2 - k^2, {n, 14}, {k, 0, n - 1}] /. n_ /; EvenQ@ n -> Nothing // Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=1,20,for(k=0,n-1,s=n^2-k^2;if(s%2,print1(s,", ")))) \\ Derek Orr, Dec 24 2015

Formula

a(n) = A261046(n)*A167268(n+1)/2, where A167268 is Janet's sequence.
Showing 1-2 of 2 results.