A024606 Numbers of form x^2 + xy + y^2 with distinct x and y > 0.
7, 13, 19, 21, 28, 31, 37, 39, 43, 49, 52, 57, 61, 63, 67, 73, 76, 79, 84, 91, 93, 97, 103, 109, 111, 112, 117, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 193, 196, 199, 201, 208, 211, 217, 219, 223, 228, 229, 237, 241, 244, 247
Offset: 1
Examples
a(1) = 7 = 1^2 + 2 + 2^2.
Links
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Michael Somos, A Multisection of q-Series
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for sequences related to A2 = hexagonal = triangular lattice
Programs
-
Mathematica
Take[Union[Flatten[Table[x^2 + x*y + y^2, {x, 15}, {y, x - 1}]]], 60] (* Robert G. Wilson v, Nov 24 2013 *)
-
PARI
for(k=1,247,my(a088534=sum(x=0,sqrt(k\3),sum(y=max(x,sqrtint(k-x^2)\2),sqrtint(k-2*x^2),x^2+x*y+y^2==k)),a004016d6=sumdiv(k,d,(d%3==1)-(d%3==2)));if(a088534!=a004016d6,print1(k,", "))) \\ Hugo Pfoertner, Sep 22 2019
Formula
A004016(a(n)) >= 12. - Jean-Christophe Hervé, Nov 24 2013
Extensions
Definition modified by Alonso del Arte and Jean-Christophe Hervé, Nov 25 2013
Comments