cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A024613 Duplicate of A024606.

Original entry on oeis.org

7, 13, 19, 21, 28, 31, 37, 39, 43, 49, 52, 57, 61, 63, 67, 73, 76, 79, 84, 91, 93, 97, 103, 109
Offset: 1

Views

Author

Keywords

A004611 Divisible only by primes congruent to 1 mod 3.

Original entry on oeis.org

1, 7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 97, 103, 109, 127, 133, 139, 151, 157, 163, 169, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 283, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 409, 421, 427, 433, 439, 457
Offset: 1

Views

Author

Keywords

Comments

In other words, if a prime p divides n, then p == 1 mod 3.
Equivalently, products of primes == 1 (mod 6), products of elements of A002476.
Positive integers n such that n+d+1 is divisible by 3 for all divisors d of n. For example, a(13)=91 since 91=7*13, 91+1+1=93=3*31, 91+7+1=99=9*11, 91+13+1=105=3*7*5, 91+91+1=183=3*61. The only prime p such that x+d+1 is divisible by p for all divisors d of x is p=3. The sequence consists of 1 and all integers whose prime divisors are of the form 6k+1. - Walter Kehowski, Aug 09 2006
Also z such that z^2 = x^2 + x*y + y^2 and gcd(x,y,z) = 1. - Frank M Jackson, Jul 30 2013
From Jean-Christophe Hervé, Nov 24 2013: (Start)
Apart from the first term (for all in this comment), this sequence is the analog of A008846 (hypotenuses of primitive Pythagorean triangles) for triangles with integer sides and a 120-degree angle: a(n), n>1, is the sequence of lengths of the longest side of the primitive triangles.
Not only the square of these numbers is equal to x^2 + xy + y^2 with x and y > 0, but the numbers themselves also are; the sequence starting at n=2 is then a subsequence of A024606.
(End)
Numbers n such that 3/n cannot be written as the sum of 2 unit fractions. - Carl Schildkraut, Jul 19 2016
a(n), n>1, is the sequence of lengths of the middle side b of the primitive triangles such that A < B < C with an angle B = 60 degrees (A335895). Compare with comment of Nov 24 2013 where a(n), n>1, is the sequence of lengths of the longest side of the primitive triangles that have an angle = 120 degrees. - Bernard Schott, Mar 29 2021

Crossrefs

Multiplicative closure of A002476.

Programs

  • Magma
    [n: n in [1..500] | forall{d: d in PrimeDivisors(n) | d mod 3 eq 1}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    with(numtheory): for n from 1 to 1801 by 6 do it1 := ifactors(n)[2]: it2 := 1: for i from 1 to nops(it1) do if it1[i][1] mod 6 > 1 then it2 := 0; break fi: od: if it2=1 then printf(`%d,`,n) fi: od:
    with(numtheory): cnt:=0: L:=[]: for w to 1 do for n from 1 while cnt<100 do dn:=divisors(n); Q:=map(z-> n+z+1, dn); if andmap(z-> z mod 3 = 0, Q) then cnt:=cnt+1; L:=[op(L),[cnt,n]]; fi; od od; L; # Walter Kehowski, Aug 09 2006
  • Mathematica
    ok[1]=True;ok[n_]:=And@@(Mod[#,3]==1&)/@FactorInteger[n][[All,1]];Select[Range[500],ok] (* Vincenzo Librandi, Aug 21 2012 *)
    lst={}; maxLen=331; Do[If[Reduce[m^2+m*n+n^2==k^2&&m>=n>=0&&GCD[k, m, n]==1, {m, n}, Integers]===False, Null[], AppendTo[lst, k]], {k, maxLen}]; lst (* Frank M Jackson, Jul 04 2013 from A034017 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);for(i=1,#f,if(f[i]%3!=1,return(0)));1 \\ Charles R Greathouse IV, Feb 06 2013
    
  • PARI
    list(lim)=my(v=List([1]), mn, mx, t); forprime(p=7, lim\=1, if(p%6==1, listput(v, p))); if(lim<49, return(Vec(v))); forprime(p=7, sqrtint(lim), if(p%6>1, next); mx=1; while(v[mx+1]*p<=lim, for(i=mn=mx+1, mx=#v, t=p*v[i]; if(t>lim, break); listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Jan 11 2018

Extensions

More terms from James Sellers, Oct 30 2000
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A024614 Numbers of the form x^2 + xy + y^2, where x and y are positive integers.

Original entry on oeis.org

3, 7, 12, 13, 19, 21, 27, 28, 31, 37, 39, 43, 48, 49, 52, 57, 61, 63, 67, 73, 75, 76, 79, 84, 91, 93, 97, 103, 108, 109, 111, 112, 117, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199, 201, 208, 211, 217, 219, 223, 228
Offset: 1

Views

Author

Keywords

Comments

Equivalently, sequence A024612 with duplicates removed; i.e., numbers of the form i^2 - i*j + j^2, where 1 <= i < j.
A subsequence of A135412, which consists of multiples (by squarefree factors) of the numbers listed here. It appears that this lists numbers > 1 which have in their factorization: (a) no even power of 3 unless there is a factor == 1 (mod 6); (b) no odd power of 2 or of a prime == 5 (mod 6) and no even power unless there is a factor 3 or == 1 (mod 6). - M. F. Hasler, Aug 17 2016
If we regroup the entries in a triangle with row lengths A004526
3,
7,
12, 13,
19, 21,
27, 28, 31,
37, 39, 43,
... it seems that the j-th row of the triangle contains the numbers i^2+j^2-i*j in row j>=2 and column i = floor((j+1)/2) .. j-1. - R. J. Mathar, Aug 21 2016
Proof of the above characterization: the sequence is the union of 3*(the squares A000290) and A024606 (numbers x^2+xy+y^2 with x > y > 0). For the latter it is known that these are the numbers with a factor p==1 (mod 6) and any prime factor == 2 (mod 3) occurring to an even power. The former (3*n^2) are the same as (odd power of 3)*(even power of any other prime factor). The union of the two cases yields the earlier characterization. - M. F. Hasler, Mar 04 2018
Least term that can be written in exactly n ways is A300419(n). - Altug Alkan, Mar 04 2018
For the general theory see the Fouvry et al. reference and A296095. Bounds used in the Julia program are based on the theorems in this paper. - Peter Luschny, Mar 10 2018

Examples

			3 = 1^2 + 1^2 + 1*1, 7 = 2^2 + 1^2 + 2*1, ...
		

Crossrefs

Cf. A003136, A007645 (prime terms), A024612, A135412, A296095, A300419.

Programs

  • Julia
    function isA024614(n)
        n % 3 >= 2 && return false
        n == 3 && return true
        M = Int(round(2*sqrt(n/3)))
        for y in 2:M, x in 1:y
            n == x^2 + y^2 + x*y && return true
        end
        return false
    end
    A024614list(upto) = [n for n in 1:upto if isA024614(n)]
    println(A024614list(228)) # Peter Luschny, Mar 02 2018 updated Mar 17 2018
    
  • Maple
    isA024614 := proc(n)
        local i,j,disc;
        # n=i^2+j^2-i*j = (j-i)^2+i*j, 1<=i=1 and i*j>=j and i^2+j^2-i*j >= 1+j max search radius
        for j from 2 to n-1 do
            # i=(j +- sqrt(4n-3j^2))/2
            disc := 4*n-3*j^2 ;
            if disc >= 0 then
                if issqr(disc) then
                    i := (j+sqrt(disc))/2 ;
                    if type(i,'integer') and i >= 1 and i= 1 and iA024614(t) then
            printf("%d %d\n",n,t) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 21 2016
    # second Maple program:
    a:= proc(n) option remember; local k, x;
          for k from a(n-1)+1 do for x while x^2 x^2+(x+y)*y=k)((isqrt(4*k-3*x^2)-x)/2) then return k fi
          od od
        end: a(0):=0:
    seq(a(n), n=1..200);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    max = 228; T0 = {}; xm = Ceiling[Sqrt[max]]; While[T = T0; T0 = Table[x^2 + x y + y^2, {x, 1, xm}, {y, x, xm}] // Flatten // Union // Select[#, # <= max&]&; T != T0, xm = 2 xm]; T (* Jean-François Alcover, Mar 23 2018 *)
  • PARI
    is(n)={n>2&&!for(i=1, #n=Set(Col(factor(n)%6))/*consider prime factors mod 6*/, n[i][1]>1||next/*skip factors = 1 mod 6*/; /* odd power: ok only if p=3 */n[i][2]%2&&(n[i][1]!=3 || next) && return; /*even power: ok if there's a p==1, listed first*/ n[1][1]==1 || /*also ok if it's not a 3 and if there's a 3 elsewhere */ (n[i][1]==2 && i<#n && n[i+1][1]==3) || (n[i][1]>3 && for(j=1,i-1,n[j][1]==3 && next(2))||return))} \\ M. F. Hasler, Aug 17 2016, documented & bug fixed (following an observation by Altug Alkan) Mar 04 2018
    
  • PARI
    is(n)={(n=factor(n))||return/*n=1*/; /*exponents % 2, primes % 3*/ n[,2]%=2; n[,1]%=3; (n=Set(Col(n))) /*odd power of a prime == 2? will be last*/ [#n][2] && n[#n][1]==2 && return; /*factor == 1? will be 1st or after 3*/ n[1+(!n[1][1] && #n>1)][1]==1 || /*thrice a square?*/ (!n[1][1]&&n[1][2]&&!for(i=2,#n,n[i][2]&&return))} \\ Alternate code, 5% slower, maybe a bit less obscure. - M. F. Hasler, Mar 04 2018
    
  • PARI
    N=228; v=vector(N);
    for(x=1,N, x2=x*x; if(x2>N,break); for(y=x,N, t=x2+y*(x+y); if(t>N,break); v[t]=1;));
    for(n=1,N,if(v[n],print1(n,", "))); \\ Joerg Arndt, Mar 10 2018
    
  • PARI
    list(lim)=my(v=List(), x2); lim\=1; for(x=1, sqrtint(4*lim\3), x2=x^2; for(y=1, min((sqrt(4*lim-3*x2)-x)/2, x), listput(v, y*(x+y)+x2))); Set(v) \\ Charles R Greathouse IV, Mar 23 2018

Extensions

Edited by M. F. Hasler, Aug 17 2016
b-file for values a(1)..a(10^4) double-checked with PARI code by M. F. Hasler, Mar 04 2018

A050931 Numbers having a prime factor congruent to 1 mod 6.

Original entry on oeis.org

7, 13, 14, 19, 21, 26, 28, 31, 35, 37, 38, 39, 42, 43, 49, 52, 56, 57, 61, 62, 63, 65, 67, 70, 73, 74, 76, 77, 78, 79, 84, 86, 91, 93, 95, 97, 98, 103, 104, 105, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133, 134, 139, 140, 143, 146, 147, 148, 151
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 30 1999

Keywords

Comments

Original definition: Solutions c of cot(2*Pi/3)*(-(a+b+c)*(-a+b+c)*(-a+b-c)*(a+b-c))^(1/2)=a^2+b^2-c^2, c>a,b integers.
Note cot(2*Pi/3) = -1/sqrt(3).
Also the c-values for solutions to c^2 = a^2 + ab + b^2 in positive integers. Also the numbers which occur as the longest side of some triangle with integer sides and a 120-degree angle. - Paul Boddington, Nov 05 2007
The sequence can also be defined as the numbers w which are Heronian means of two distinct positive integers u and v, i.e., w = [u+sqrt(uv)+v]/3. E.g., 28 is the Heronian mean of 4 and 64 (and also of 12 and 48). - Pahikkala Jussi, Feb 16 2008
From Jean-Christophe Hervé, Nov 24 2013: (Start)
This sequence is the analog of hypotenuse numbers A009003 for triangles with integer sides and a 120-degree angle. There are two integers a and b > 0 such that a(n)^2 = a^2 + ab + b^2, and a, b and a(n) are the sides of the triangle: a(n) is the sequence of lengths of the longest side of these triangles. A004611 is the same for primitive triangles.
a and b cannot be equal because sqrt(3) is not rational. Then the values a(n) are such that a(n)^2 is in A024606. It follows that a(n) is the sequence of multiples of primes of form 6k+1 A002476.
The sequence is closed under multiplication. The primitive elements are those with exactly one prime divisor of the form 6k+1 with multiplicity one, which are also those for which there exists a unique 120-degree integer triangle with its longest side equals to a(n).
(End)
Conjecture: Numbers m such that abs(Sum_{k=1..m} [k|m]*A008683(k)*(-1)^(2*k/3)) = 0. - Mats Granvik, Jul 06 2024

Crossrefs

Cf. A002476, A004611, A024606, A230780 (complement), A009003.
Cf. A027748.

Programs

  • Haskell
    a050931 n = a050931_list !! (n-1)
    a050931_list = filter (any (== 1) . map (flip mod 6) . a027748_row) [1..]
    -- Reinhard Zumkeller, Apr 09 2014
    
  • Mathematica
    Select[Range[2,200],MemberQ[Union[Mod[#,6]&/@FactorInteger[#][[All,1]]],1]&] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    is_A050931(n)=n>6&&Set(factor(n)[,1]%6)[1]==1 \\ M. F. Hasler, Mar 04 2018

Formula

A005088(a(n)) > 0. Terms are obtained by the products A230780(k)*A004611(p) for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 24 2013
cot(2*Pi/3) = -1/sqrt(3) = -0.57735... = - A020760. - M. F. Hasler, Aug 18 2016

Extensions

Simpler definition from M. F. Hasler, Mar 04 2018

A118886 Numbers expressible as x^2 + x*y + y^2, 0 <= x <= y, in 2 or more ways.

Original entry on oeis.org

49, 91, 133, 147, 169, 196, 217, 247, 259, 273, 301, 343, 361, 364, 399, 403, 427, 441, 469, 481, 507, 511, 532, 553, 559, 588, 589, 637, 651, 676, 679, 703, 721, 741, 763, 777, 784, 793, 817, 819, 868, 871, 889, 903, 931, 949, 961, 973, 988, 1027, 1029, 1036, 1057, 1083, 1092, 1099
Offset: 1

Views

Author

Keywords

Comments

Squares of distances between two points in the triangular lattice in two or more nontrivially different ways.
Numbers whose prime factorization contains at least two (not necessarily distinct) primes congruent to 1 mod 6 and any prime factor congruent to 2 mod 3 has even multiplicity. Products of two elements of A024606.
If k is in the sequence then so is k * m^2 for m > 0. - David A. Corneth, Jun 21 2018

Examples

			a(2) = 91 = 1^2 + 1*9 + 9^2 = 5^2 + 5*6 + 6^2;
a(45) = 931 = 1^2+1*30+30^2 = 9^2+9*25+25^2 = 14^2+14*21+21^2;
a(97) = 1729 = 3^2+3*40+40^2 = 8^2+8*37+37^2 = 15^2+15*32+32^2 = 23^2+23*25+25^2. - _Reinhard Zumkeller_, Oct 30 2011
		

Crossrefs

Subsequence of Loeschian numbers A003136.
Complement of A198772 with respect to A003136.
Subsequences: A198773, A198774, A198775.

Programs

  • Haskell
    a118886 n = a118886_list !! (n-1)
    a118886_list = filter ((> 1) . a088534) a003136_list
    -- Reinhard Zumkeller, Oct 30 2011
    
  • Julia
    function isA118886(n)
        n < 49 && return false
        n % 3 == 2 && return false
        M = Int(round(2*sqrt(n/3)))
        count = 0
        for y in 0:M, x in 0:y
            n == x^2 + y^2 + x*y && (count += 1)
            count == 2 && break
        end
        return count >= 2
    end
    A118886list(upto) = [n for n in 0:upto if isA118886(n)]
    A118886list(1099) |> println # Peter Luschny, Mar 17 2018
  • Mathematica
    amax = 2000; xmax = Sqrt[amax] // Ceiling; Clear[f]; f[_] = 0; Do[q = x^2 + x y + y^2; f[q] = f[q] + 1, {x, 0, xmax}, {y, x, xmax}];
    A118886 = Select[Range[0, 3 xmax^2], # <= amax && f[#] > 1&] (* Jean-François Alcover, Jun 21 2018 *)
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2+z+1), n) > 2;
    select(is, vector(1500,j,j)) \\ Joerg Arndt, Jan 11 2015
    

Formula

A088534(a(n)) > 1. - Reinhard Zumkeller, Oct 30 2011

A232436 Numbers which are uniquely decomposable into x^2+xy+y^2, the unique decomposition being with two distinct nonzero x and y.

Original entry on oeis.org

7, 13, 19, 21, 28, 31, 37, 39, 43, 52, 57, 61, 63, 67, 73, 76, 79, 84, 93, 97, 103, 109, 111, 112, 117, 124, 127, 129, 139, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 193, 199, 201, 208, 211, 219, 223, 228, 229, 237, 241, 244, 252, 268
Offset: 1

Views

Author

Jean-Christophe Hervé, Nov 23 2013

Keywords

Comments

These are the primitive elements of A024606, the integers which are expressible as x^2 + xy + y^2 with distinct nonzero x and y.
As a subsequence of A003136 (Loeschian numbers), the sequence is related with the triangular lattice: circles with radius sqrt(a(n)) centered at a grid point in this lattice hit exactly 12 points, cf. A004016.
Numbers with exactly one prime factor of form 6k+1 with multiplicity one and no prime factor of form 3k+2 with odd multiplicity, that is a(n) is of form 3^a*p*q^2, with a>=0, p a prime of form 6k+1, and q an integer with all its prime factors of form 3k+2. There is thus no square in the sequence.
From a(n) = 3^a*p*q^2, it is easily seen that sigma(a(n)) = 2 mod 6,
thus this sequence is a subsequence of A074628: the two sequences are equal up to a(308) = 1723; then A074628(309)= 1729 = a(1)*a(2)*a(3), the famous Ramanujan's taxi number, and a(309) = A074628(310) = 1731.
The square of these numbers is also uniquely decomposable into the form x^2 + xy + y^2 with x and y > 0, thus this sequence is a subsequence of A232437.

Examples

			a(1)= 7 = 2^2+2+1, a(2)= 13 = 3^2+3+1. However 3 = 1+1+1 and 4 = 2^2+0*2+0 are not in the sequence because the unique decomposition of these numbers is not with two distinct nonzero numbers; 49, 147 are also excluded because there are two decompositions of these numbers (including one with equal or zero components x and y).
		

Crossrefs

Cf. (Analog for the square lattice) A230779, A001481, A004431, A002144, A004018, A084645.

Programs

  • Mathematica
    r[k_] := Reduce[x != 0 && y != 0 && x != y && k == x^2 + x y + y^2, {x, y}, Integers];
    selQ[k_] := If[IntegerQ[Sqrt[k]], False, Which[rk = r[k]; rk === False, False, rk[[0]] === And && Length[rk] == 2, True, rk[[0]] === Or && Length[rk] == 12, True, True, False]];
    Select[Range[1000], selQ] (* Jean-François Alcover, Feb 20 2020 *)

Formula

Terms are obtained by the products A230781(k)*A002476(p) for k, p > 0, ordered by increasing values.
A004016(a(n))=12.

A240227 All even positive integers which have at least one 'balanced' representation as a sum of three distinct nonzero squares.

Original entry on oeis.org

14, 26, 38, 42, 56, 62, 74, 78, 86, 98, 104, 114, 122, 126, 134, 146, 152, 158, 168, 182, 186, 194, 206, 218, 222, 224, 234, 248, 254, 258, 266, 278, 294, 296, 302, 312, 314, 326, 338, 342, 344, 350, 362, 366, 378, 386, 392, 398, 402, 416, 422, 434, 438, 446, 456, 458, 474, 482, 488, 494, 504, 518, 536, 542, 546, 554, 558, 566, 582, 584
Offset: 1

Views

Author

Wolfdieter Lang, May 02 2014

Keywords

Comments

For the numbers with representations as a sum of three distinct nonzero squares see A004432. For their multiplicity see A025442.
Here only even numbers are considered, and a representation 2*m = a^2 + b^2 + c^2, a > b > c > 0 denoted by the triple (a,b,c), is called 'balanced' if a = b + c. E.g., 62 is represented by (6, 5, 1) and (7, 3, 2) but only (6, 5, 1) is balanced because 6 = 5 + 1.
The multiplicities are given in A240228.
These numbers a(n) play a role in the problem proposed in A236300: Find all numbers which are of the form (x + y + z)*(u^2 + v^2 + w^2)/2, x >= y >= z >= 0, where u = x-y, v = x-z, w = y-z, with u >= 0, v >=0, w >= 0, u - v + w = 0 and even u^2 + v^2 + w^2 >= 4. The special case (called in a comment on A236300 case (iib)) with distinct u, v, and w, each >=1, needs the numbers a(n) of the present sequence. If the triple is taken as (u, u+w, w) with u < w then the [x, y, z] values are [2*u+w, u+w, u] and the number from A236300 is (2*u+w)*(u^2 + w^2 + u*w) =(2*u+w)*a(n). If this number from A236300 has multiplicity A240228(n) >=2 then there are A240228(n) different values for [x, y, z] and corresponding different A236300 numbers.

Examples

			n  a(n) (u, v=u+w, w)  [x, y,z]  A236300 member
1:  14   (1, 3, 2)    [4, 3, 1]     8*7 =   56
2:  26   (1, 4, 3)    [5, 4, 1]   10*13 =  130
3:  38   (2, 5, 3)    [7, 5, 2]   14*19 =  266
4:  42   (1, 5, 4)    [6, 5, 1]   12*21 =  252
5:  56   (2, 6, 4)    [8, 6, 2]   16*28 =  448
6:  62   (1, 6, 5)    [7, 6, 1]   14*31 =  434
7:  74   (3, 7, 4)   [10, 7, 3]   20*37 =  740
8:  78   (2, 7, 5)    [9, 7, 2]   18*39 =  702
9:  86   (1, 7, 6)    [8, 7, 1]   16*43 =  688
10: 98   (3, 8, 5)   [11, 8, 3]   22*49 = 1078 ...
For n=11 .. 20 see the link.
		

Crossrefs

Cf. A004432, A025442, A236300, A240228 (multiplicities).

Formula

The increasingly ordered elements of the set {2*k, k positive integer : 2*k = u^2 + (u+w)^2 + w^2 with 1 <= u < w }.
a(n) = 2*A024606(n). - Robert Israel, May 21 2014

A230781 Squared radii of circles centered at a grid point in a triangular lattice hitting exactly 6 points. Squares or triple of squares that are not expressible as x^2+xy+y^2 with y > x > 0.

Original entry on oeis.org

1, 3, 4, 9, 12, 16, 25, 27, 36, 48, 64, 75, 81, 100, 108, 121, 144, 192, 225, 243, 256, 289, 300, 324, 363, 400, 432, 484, 529, 576, 625, 675, 729, 768, 841, 867, 900, 972, 1024, 1089, 1156, 1200, 1296, 1452, 1587, 1600, 1681, 1728, 1875, 1936, 2025, 2116, 2187, 2209, 2304, 2500
Offset: 1

Views

Author

Jean-Christophe Hervé, Nov 23 2013

Keywords

Comments

Numbers without prime factor of form 6k+1 and without prime factor of form 3k+2 to an odd multiplicity.
The sequence is closed under multiplication. Primitive elements are 3 and square of primes of form 3k+2 (A003627). Sequence A003136 (Loeschian numbers) is the union of {0}, this sequence and A024606 (numbers of form x^2+xy+y^2 with y > x > 0). These 4 sequences are all closed under multiplication.

Examples

			49 is not in the sequence because 49 = 3^2+3*5+5^2.
		

Crossrefs

Programs

  • Mathematica
    selQ[1] = True; selQ[n_] := Module[{f = FactorInteger[n]}, FreeQ[f, {p_, q_} /; Mod[p, 6] == 1 || Mod[p, 3] == 2 && OddQ[q]]]; Select[Range[2500], selQ] (* Jean-François Alcover, Nov 25 2013, after first comment *)
Showing 1-8 of 8 results.