cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A054892 Smallest prime a(n) such that the sum of n consecutive primes starting with a(n) is divisible by n.

Original entry on oeis.org

2, 3, 3, 5, 71, 5, 7, 17, 239, 13, 29, 5, 43, 23, 5, 5, 7, 7, 79, 17, 47, 11, 2, 73, 97, 53, 271, 13, 263, 23, 41, 61, 97, 101, 181, 41, 47, 13, 233, 13, 53, 13, 359, 151, 71, 61, 239, 73, 443, 859, 29, 131, 2, 61, 313, 101, 19, 151, 521, 3, 571, 31, 7, 79, 109, 97, 53
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

See A132809 for another version.
In some cases (n=1,2,25,..), like a(25)=97, the sum of 25 consecutive primes starts with the 25th prime and is divided by 25: Sum=97+...+227=3925=25*157

Examples

			a(8) = 17 since the sum of the 8 consecutive primes starting with 17 is 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 = 240, which is divisible by 8.  No prime less than 17 has this property: for example, 7 + 11 + ... + 31 = 150 which is not divisible by 8.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, t}, While[t = Table[Prime[i], {i, k, k + n - 1}]; Mod[Plus @@ t, n] > 0, k++ ]; t]; First /@ Table[f[n], {n, 67}] (* Ray Chandler, Oct 09 2006 *)
    Module[{prs=Prime[Range[250]]},Table[SelectFirst[Partition[prs,n,1],Mod[Total[#],n]==0&],{n,70}]][[;;,1]] (* Harvey P. Dale, Jul 11 2023 *)

Formula

a(n) = min{q_1 | Sum_{i=1..n} q_i = n*X}, q_i is a prime (rarely only a(n) = prime(n)).
Showing 1-1 of 1 results.